

Air-Cooled Screw Liquid Chillers

Installation, Operation, Maintenance

Supersedes: 201.28-NM1.1 (321)

Form 201.28-NM1.1 (821)

035-23219-100

Model YVAA Style A Air-Cooled Screw Liquid Chillers with Variable Speed Drive Frame Sizes 015 – 052 150 ton to 500 ton

525 kW to 1750 kW 2 Compressor 50 Hz and 60 Hz

HFC-134A or R-513A

Form 201.28-NM1.1 Issue date: 08/06/2021

Important

Read before proceeding

General safety guidelines

This equipment is a relatively complicated apparatus. During rigging, installation, operation, maintenance, or service, individuals may be exposed to certain components or conditions including, but not limited to: heavy objects, refrigerants, materials under pressure, rotating components, and both high and low voltage. Each of these items has the potential, if misused or handled improperly, to cause bodily injury or death. It is the obligation and responsibility of rigging, installation, and operating/service personnel to identify and recognize these inherent hazards, protect themselves, and proceed safely in completing their tasks. Failure to comply with any of these requirements could result in serious damage to the equipment and the property in

which it is situated, as well as severe personal injury or death to themselves and people at the site.

This document is intended for use by owner-authorized rigging, installation, and operating/service personnel. It is expected that these individuals possess independent training that will enable them to perform their assigned tasks properly and safely. It is essential that, prior to performing any task on this equipment, this individual shall have read and understood the on-product labels, this document and any referenced materials. This individual shall also be familiar with and comply with all applicable industry and governmental standards and regulations pertaining to the task in question.

Safety symbols

The following symbols are used in this document to alert the reader to specific situations:

Indicates a possible hazardous situation which will result in death or serious injury if proper care is not taken.

Identifies a hazard which could lead to damage to the machine, damage to other equipment and/or environmental pollution if proper care is not taken or instructions and are not followed.

Indicates a potentially hazardous situation which will result in possible injuries or damage to equipment if proper care is not taken.

Highlights additional information useful to the technician in completing the work being performed properly.

External wiring, unless specified as an optional connection in the manufacturer's product line, is not to be connected inside the control cabinet. Devices such as relays, switches, transducers and controls and any external wiring must not be installed inside the micro panel. All wiring must be in accordance with Johnson Controls' published specifications and must be performed only by a qualified electrician. Johnson Controls will NOT be responsible for damage/problems resulting from improper connections to the controls or application of improper control signals. Failure to follow this warning will void the manufacturer's warranty and cause serious damage to property or personal injury.

Form 201.28-NM1.1 Issue date: 08/06/2021

Changeability of this document

In complying with Johnson Controls' policy for continuous product improvement, the information contained in this document is subject to change without notice. Johnson Controls makes no commitment to update or provide current information automatically to the manual or product owner. Updated manuals, if applicable, can be obtained by contacting the nearest Johnson Controls Service office or accessing the Johnson Controls Knowledge Exchange website at https://docs.johnsoncontrols.com/chillers/

It is the responsibility of rigging, lifting, and operating/ service personnel to verify the applicability of these documents to the equipment. If there is any question regarding the applicability of these documents, rigging, lifting, and operating/service personnel should verify whether the equipment has been modified and if current literature is available from the owner of the equipment prior to performing any work on the chiller.

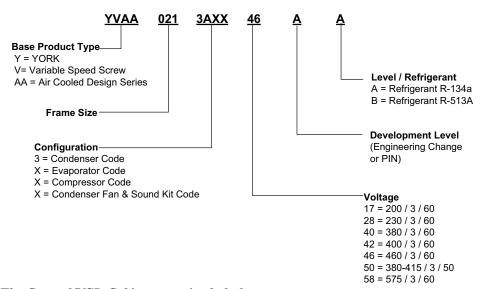
Revision notes

Revisions made to this document are indicated in the following table. These revisions are to technical information, and any other changes in spelling, grammar, or formatting are not included.

Affected pages	Description
20	Water box heater text updated
37	Chilled liquid requirements text updated
100,101	Freeze damage protection text updated

Associated literature

Manual description	Form number
Equipment Pre-Startup and Startup Checklist	201.28-CL2
YVAA Style A Frame Size 015 - 027, 2 Compressor 60 Hz (150-350 Tons) YVAA Style A Frame Size 054 - 098, 2 Compressor 50 Hz (525-950 KW) Manufactured before April 2012	201.28-RP1
YVAA Style A Frame Size 015 - 052, 2 Compressor 50 & 60 Hz (150-500 Tons) (Manufactured after April 2012 to before September 2014)	201.28-RP2
YVAA Style B Frame Size 015 - 052, 2 Compressor 50 & 60 Hz (150-500 Tons) (Manufactured after September 2014)	201.28-RP3


Conditioned based maintenance

Traditional chiller maintenance is based upon assumed and generalized conditions. In lieu of the traditional maintenance program, a Johnson Controls YORK Conditioned Based Maintenance (CBM) program can be substituted. This CBM service plan is built around the specific needs for the chiller, operating conditions, and annualized impact realized by the chiller. Your local Johnson Controls Branch can propose a customized

Planned Service Agreement that leverages real time and historical data, delivering performance reporting, corrective actions required and data enabled guidance for optimal operation and lifecycle assurance. The program will include fault detection diagnostics, operation code statistics, performance based algorithms and advance rules based rationale delivered by the Johnson Controls Connected Equipment Portal.

Form 201.28-NM1.1 Issue date: 08/06/2021

UNIT NOMENCLATURE

The Control/VSD Cabinet contains lethal high AC and DC voltages. Before performing service inside the cabinet, remove the AC supply feeding the chiller and verify using a non-contact voltage sensor.

The DC voltage on the VSD DC Bus will take 5 minutes to bleed off, after AC power is removed. Always check the DC Bus Voltage with a Voltmeter to assure the capacitor charge has bled off before working on the system.

NEVER short out the DC Bus to discharge the filter capacitors.

NEVER place loose tools, debris, or any objects inside the Control Panel/VSD Cabinet.

ASHRAE 90.1 Compliant

NEVER allow the Control Panel VSD Cabinet doors to remain open if there is a potential for rain to enter the panel. Keep doors closed and assure all latches are engaged on each door unless the unit is being serviced.

ALWAYS lockout the disconnect supplying AC to the chiller.

The 1L Line Inductor will reach operating temperatures of over 150°C (300°F.) DO NOT open panel doors during operation. Assure the inductor is cool whenever working near the inductor with power OFF.

Products are produced at a facility whose quality-management systems are ISO9001 certified.

Table of contents

Introduction	
Warranty	
Quality assurance and safety	
Fluorinated greenhouse gases	
Responsibility for safety	
About this manual	
Misuse of equipment	
Misuse of equipment	12
Section 2 - Product description	15
General system description	15
Semi-hermetic YORK twin-screw compressors	17
Evaporator	17
Condenser	17
Refrigerant circuit	17
Electrical	17
Building automation system capabilities	18
Microcomputer control center	
Accessories and options	
Fan options	
Condenser coils	
Section 3 - Rigging, handling, and storage	23
Lifting weights	23
Delivery and storage	23
Inspection	24
Moving the chiller	24
Unit removal from shipping container	24
Lifting using lugs	24
Lifting using shackles	24
Section 4 - Installation	
Location requirements	
Outdoor installations	
Location clearances	
Vibration isolators	
Shipping braces	
Chilled liquid piping	
Evaporator pressure drop	
Water treatment	
Pipework arrangement	
Minimum water volume	
Leaving water temperature out of range	
Thermal storage	
Variable primary flow	
Connection types and sizes	
Evaporator connections	
Refrigerant relief valve piping	
Electrical connection	
Power wiring	44

Table of contents (cont'd)

Power supply wiring	44
115 VAC control supply transformer	44
Control wiring	
Volts free contacts	
System inputs	45
Power supply wiring	46
Customer control wiring	48
Thermal dispersion flow switch connections	
Section 5 - Technical data	63
Elastomeric isolator installation	90
Elastomeric isolator specifications	91
One inch deflection isolator installation	92
One inch deflection spring isolator specifications	93
Two inch deflection isolator installation and adjustment	94
Two inch deflection, restrained spring isolator specifications	95
Section 6 - Commissioning	97
Preparation	97
First time startup	100
General operation	100
Section 7 - Operation	103
Operating controls	103
Basic operating sequence	
Unit warning	106
Microboard (331-03478-xxx)	106
Building automation system (BAS) communications	109
E-Link or SC-EQ interface	110
SC-EQ or E-Link BAS communications card	113
Program update	123
Data logging	123
Unit safeties	125
System safeties (faults)	126
Section 8 - Micropanel	131
Unit data key	
System data keys 1 through 4	
VSD data key	
Operating hours / Start counter key	
History key	
Setpoints key	
Program key	
Options key	
Date/time and schedule keys	
Manual override key	
Print key	
System switches key	

Table of contents (cont'd)

Section 9 - Maintenance	165
General requirements	165
Refrigerant removal, evacuation and charging a YVAA chiller	166
Microchannel coil cleaning	
Thermal dispersion flow switch	169
Maintenance requirements for YVAA chillers	
R-134a conversion table	174
R-513A conversion table	175
R-513A conversion table	176
Section 10 - Decommissioning, dismantling, and disposal	181
Temperature	182
Notes	183

List of figures

Figure 1 - YVAA air-cooled screw liquid chiller with variable speed drives	15
Figure 2 - Chiller control system	
Figure 3 - View of YORK control center user interface	
Figure 4 - Lifting using lugs	
Figure 5 - Acceptable minimum clearances around and between units	
Figure 6 - Two pass water pressure drop, English units	39
Figure 7 - Three pass water pressure drop, English units	
Figure 8 - Pipework arrangement	
Figure 9 - Leaving water temperature out of range suggested layout	
Figure 10 - Suggested layout for applications with a flow rate less than the evaporator minimum	
allowable flow rate	41
Figure 11 - Suggested layout for applications with a flow rate greater than the evaporator maximum	
allowable flow rate	41
Figure 12 - Grooved nozzle	41
Figure 13 - Flange for GB vessels	
Figure 14 - Flange attachment	
Figure 15 - Single point power wiring	
Figure 16 - Dual point power wiring	
Figure 17 - Customer control connections	
Figure 18 - Thermal dispersion flow switch connections	
Figure 19 - Reserved customer wiring entry	
Figure 20 - Water box heater wiring box	
Figure 21 - YVAA dimensions	
Figure 22 - LED indicator buttons	
Figure 23 - Flow switch set	
Figure 24 - Flow below the representation range	
Figure 25 - Flow exceeds the representation range	
Figure 26 - Keyboard and display	
Figure 27 - New 331-03478-xxx microboard	
Figure 28 - I ON F-I ink gateway option	113

List of tables

Table 1 - Unit rigging	26
Table 2 - Minimum evaporator tube removal clearance	36
Table 3 - Evaporator connections dimensions	42
Table 4 - Electrical lug data	52
Table 5 - Physical data - Microchannel coil	
Table 6 - Physical data - Round tube coil	68
Table 7 - Optional one-pass evaporator	70
Table 8 - Standard two-pass, rear inlet/outlet evaporator	
Table 9 - Optional three-pass rear inlet/front outlet evaporator	
Table 10 - Isolator selection and mounting locations	
Table 11 - Freeze damage protection requirements	101
Table 12 - Values required for BAS communication	
Table 13 - Real time error numbers for BAS, SC-EQ or E-Link communications card	112
Table 14 - YVAA native communications data map	
Table 15 - YVAA operational and fault/inhibit codes	117
Table 16 - YVAA E-Link communications data map	
Table 17 - Flash card update error XXXXX	
Table 18 - Low differential oil pressure cutout	128
Table 19 - Discharge pressure load limiting/unloading	129
Table 20 - Suction pressure load limiting/unloading	
Table 21 - Start inhibit sensor thresholds	130
Table 22 - Sensor min/max outputs	138
Table 23 - Compressor motor overload settings	140
Table 24 - Setpoint limits	
Table 25 - Programmable operating parameters	153
Table 26 - Printout types	161
Table 27 - Troubleshooting guide	169
Table 28 - R-134a pressure to saturated temperature conversion	172
Table 29 - R-513A refrigerant pressure to saturated temperature	173
Table 30 - R-513A refrigerant temperature to pressure	174
Table 31 - Temperature input voltage sensor (measured signal to shield at the sensor)	175
Table 32 - Outside air temperature sensor input voltage (measured signal to shield at the sensor)	176
Table 33 - Pressure transducer output voltage (measured signal to return at the transducer)	177
Table 34 - Motor temperature sensor resistance (check at the motor)	
Table 35 SI metric conversion	191

FORM 201.28-NM1.1 ISSUE DATE: 12/18/2020

THIS PAGE IS INTENTIONALLY LEFT BLANK

Section 1 - General chiller information and safety

Introduction

YORK YVAA chillers are manufactured to the highest design and construction standards to ensure high performance, reliability and adaptability to all types of air conditioning installations.

The unit is intended for cooling water or glycol solutions and is not suitable for purposes other than those specified in this manual.

Rigging and lifting should only be done by a professional rigger in accordance with a written rigging and lifting plan. The most appropriate rigging and lifting method will depend on job specific factors, such as the rigging equipment available and site needs. Therefore, a professional rigger must determine the rigging and lifting method to be used, and it is beyond the scope of this manual to specify rigging and lifting details.

The rigger should locate the center of gravity through trial lifts to account for possible variations in unit configurations. Contact your nearest Johnson Controls sales office for weight data. See SECTION 3 - RIGGING, HANDLING AND STORAGE for more details.

This manual contains all the information required for correct installation and commissioning of the unit, together with operating and maintenance instructions. The manual should be read thoroughly before attempting to operate or service the unit.

All procedures detailed in the manual, including installation, commissioning and maintenance tasks must only be performed by suitably trained and qualified personnel.

The manufacturer will not be liable for any injury or damage caused by incorrect installation, commissioning, operation or maintenance resulting from a failure to follow the procedures and instructions detailed in the manual.

Warranty

Johnson Controls warrants YVAA chillers in accordance with the "Limited Warranty Engineered Systems Equipment" procedure. Refer to *Form 50.05-NM2*.

Johnson Controls warrants all equipment and materials against defects in workmanship and materials for a period of eighteen months from date of shipment or 12 months from date of startup, whichever comes first, unless labor or extended warranty has been purchased as part of the contract. The warranty is limited to parts only replacement and shipping of any faulty part, or sub-assembly, which has failed due to poor quality or manufacturing errors. All claims must be supported by evidence that the failure has occurred within the warranty period, and that the unit has been operated within the designed parameters specified.

All warranty claims must specify the unit model, serial number, order number and run hours/starts. Model and serial number information is printed on the unit identification plate.

The unit warranty will be void if any modification to the unit is carried out without prior written approval from Johnson Controls. For warranty purposes, the following conditions must be satisfied:

- The initial start of the unit must be carried out by trained personnel from an authorized Johnson Controls Service Center. See SECTION 6 COMMISSIONING, for more information.
- Only genuine YORK approved spare parts, oils, coolants, and refrigerants must be used.
- All the scheduled maintenance operations detailed in this manual must be performed at the specified times by suitably trained and qualified personnel. See *SECTION 9 MAINTENANCE*, for more information.
- Failure to satisfy any of these conditions will automatically void the warranty. Refer to *Form 50.05-NM2* for complete details.

Quality assurance and safety

YVAA chillers are designed within EN ISO 9001 and built within an EN ISO 9002 accredited manufacturing organization.

Units conform with the following European Directives:

- Machinery Directive (2006/42/EC)
- EMC Directive (2004/108/EC)
- Pressure Equipment Directive (97/23/EC)
- Low Voltage Directive (2006/95/EC)
- Safety Code for Mechanical Refrigeration (EN378-2(2008))

CE/PED marked units conform to the following standards:

- Machinery Directive (2006/42/EC).
- EMC Directive (2004/108/EC).
- Pressure Equipment Directive (97/23/EC).
- Low Voltage Directive (2006/95/EC).
- Safety Code for Mechanical Refrigeration (EN378-2(2008)).

ETL/ASME marked units conform to the following standards:

- ANSI/ASHRAE 15 Safety Code for Mechanical Refrigeration.
- ANSI/ASHRAE 34 Number Designation and Safety Classification of Refrigerants.
- ANSI/NFPA 70 National Electrical Code (NEC).
- ASME Boiler and Pressure Vessel Code, Section VIII, Division 1.

GB marked units conform to the following standards:

- GB5226.1 Safety of machinery- Electrical equipment of machines Part 1: General requirements.
- GB25131 Safety requirements for water chiller (heat pump) using the vapor compression cycle.

Fluorinated greenhouse gases

- This equipment contains fluorinated greenhouse gases covered by the Kyoto Protocol.
- The global warming potential of the refrigerant R134a is 1300. The global warming potential for R513A is 546. Both use the integrated time of 100 years based on IPCC 5th report 2013, Table 8.A.1.
- The refrigerant quantity is as stated in *Table 5 on page 64* of this document.
- The fluorinated greenhouse gases in this equipment may not be vented to the atmosphere.
- This equipment should only be serviced by qualified technicians.

Responsibility for safety

Every care has been taken in the design and manufacture of the unit to ensure compliance with the safety requirements listed above. However, the individual rigging, lifting, maintaining, operating or working on any machinery is primarily responsible for:

- Personal safety, safety of other personnel, and the machinery.
- Correct utilization of the machinery in accordance with the procedures detailed in the manual.

About this manual

The contents of this manual include suggested best working practices and procedures. These are issued for guidance only, and they do not take precedence over the above stated individual responsibility and/or local safety regulations.

This manual and any other document supplied with the unit are the property of Johnson Controls which reserves all rights. They may not be reproduced, in whole or in part, without prior written authorization from an authorized Johnson Controls representative.

Misuse of equipment

Suitability for Application

The unit is intended for cooling water or glycol solutions and is not suitable for purposes other than those specified in these instructions. Any use of the equipment other than its intended use, or operation of the equipment contrary to the relevant procedures may result in injury to the operator, or damage to the equipment.

The unit must not be operated outside the design parameters specified in this manual.

Structural support

Structural support of the unit must be provided as indicated in these instructions. Failure to provide proper support may result in injury to the operator, or damage to the equipment and/or building.

Mechanical strength

The unit is not designed to withstand loads or stresses from adjacent equipment, pipework or structures. Additional components must not be mounted on the unit. Any such extraneous loads may cause structural failure and may result in injury to the operator, or damage to the equipment.

General access

There are a number of areas and features, which may be a hazard and potentially cause injury when working on the unit unless suitable safety precautions are taken. It is important to ensure access to the unit is restricted to suitably qualified persons who are familiar with the potential hazards and precautions necessary for safe operation and maintenance of equipment containing high temperatures, pressures and voltages.

Pressure systems

The unit contains refrigerant vapor and liquid under pressure, release of which can be a danger and cause injury. The user should ensure that care is taken during installation, operation and maintenance to avoid damage to the pressure system. No attempt should be made to gain access to the component parts of the pressure system other than by suitably trained and qualified personnel.

Electrical

The unit must be grounded. No installation or maintenance work should be attempted on the electrical equipment without first switching power OFF, isolating and locking-off the power supply. Servicing and maintenance on live equipment must not be attempted. No attempt should be made to gain access to the control panel or electrical enclosures during normal operation of the unit.

Caution:

This equipment (Class A, Group 1) is designed and manufactured for use in an industrial environment, in accordance with EN 61000-6-2:2005 and EN 61000-6 4:2007 (with EN 55011:2007 limits). It is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference may occur if it is used on a low voltage public network.

This equipment equipped with VSD, may generate conducted and radiated disturbances, which may interfere with or damage susceptible connected apparatus.

Generally accepted engineering standards and practices should be followed to ensure trouble-free and EMC compliant electrical installation. Installations must be supervised or completed by a competent person in accordance with EN 13313.

Special considerations depending on the application:

- Industry standard grounding or "earthing" practices for the equipment and installation.
- Use of shielded or special cables (power and/or control).
- Use of metallic conduit and/or cable trays for power and control cables connected to equipment.
- Cable segregation (in order to avoid the risk of crosstalk or cross interference to signal cables, the power cables must be segregated from signal cables).
- Dedicated isolation transformer.
- Use of additional EMC filters.

It is the responsibility of a designated System Integrator to take proper steps assuring the Electromagnetic Compatibility of both equipment and installation as a system.

Rotating parts

Fan guards must be fitted at all times and not removed unless the power supply has been isolated. If ductwork is to be fitted, requiring the wire fan guards to be removed, alternative safety measures must be taken to protect against the risk of injury from rotating fans.

Sharp edges

The fins on the air-cooled condenser coils have sharp metal edges. Reasonable care should be taken when working in contact with the coils to avoid the risk of minor abrasions and lacerations. The use of gloves is recommended.

Frame rails, brakes, and other components may also have sharp edges. Reasonable care should be taken when working in contact with any components to avoid risk of minor abrasions and lacerations.

Form 201.28-NM1.1 Issue date: 08/06/2021

Refrigerants and oils

Refrigerants and oils used in the unit are generally non-toxic, non-flammable and non-corrosive, and pose no special safety hazards. Use of gloves and safety glasses is, however, recommended when working on the unit. The buildup of refrigerant vapor, from a leak for example, does pose a risk of asphyxiation in confined or enclosed spaces and attention should be given to good ventilation.

Use only the refrigerant specifically designated for the unit. Any other type of refrigerant may cause damage to the equipment and will void the warranty.

High temperature and pressure cleaning

High temperature and pressure cleaning methods (e.g. steam cleaning) should not be used on any part of the pressure system as this may cause operation of the pressure relief devices. Detergents and solvents, which may cause corrosion, should also be avoided.

Emergency shutdown

In case of emergency, the control panel is fitted with an incoming supply circuit breaker with a red and yellow handle which can be used as the emergency stop device. When operated it removes the electrical supply to the inverter, fans, and control circuit thus shutting down the unit.

MSDS information

Manufacturer Safety Data Sheets (MSDS) information can be obtained by calling (800) 451-8346 in the U.S. or by emailing MSDS@3Ecompany.com. Provide the product name, manufacturer, part number, and the specific language required. For additional safety information, refer to https://my.jci.com/sites/BE/NASafety.

Safety labels

White symbol on blue background. For safe operation, read the Instructions first.

Black symbol on yellow background. Warning: This machine may start automatically without prior warning.

Black symbol on yellow background. Warning: Hot surface.

Black symbol on yellow background. Warning: Safety relief valve may discharge gas or liquid without prior warning.

Black symbol on yellow background. Warning: Isolate all electrical sources of supply before opening or removing the cover, as lethal voltages may exist.

Black symbol on yellow background. General attention symbol.

Black symbol on yellow background. Warning: On isolating the supply it may take up to 300 seconds for the capacitor voltage to fall below 50 volts.

Section 2 - Product description

YORK YVAA chillers are designed for water or glycol cooling. All units are designed to be located outside on the roof of a building or at ground level.

The units are completely assembled with all interconnecting refrigerant piping and internal wiring, ready for field installation.

Prior to delivery, the unit is pressure tested, evacuated, and fully charged with refrigerant and oil in each of the two independent refrigerant circuits. After assembly, an operational test is performed with water flowing through the evaporator to ensure that each refrigerant circuit operates correctly.

The unit structure is manufactured from heavy gauge, galvanized steel. Many external structural parts are coated with baked-on enamel powder "Champagne" paint color ((RAL 7006), (Munsel No. 9.8YR4.36/1.2)).

All exposed power wiring is routed through liwquidtight, non-metallic conduit.

General system description

The YVAA Chiller combines the best of modern screw compressor design with the latest technology in variable speed drives. The result is superior control and efficiency in real world conditions. The VSD enables slowing the speed of the compressor to match the load on the system resulting in precise chilled liquid control, minimized sound, maximum energy efficiency, and reduced cost of ownership. The VSD also provides soft starts with no electrical inrush. The lack of heat build-up on start also enables required off time between starts to be reduced to a period of two minutes.

The YVAA Air-Cooled Screw Chiller utilizes many components, which are the same or nearly the same as a standard screw chiller of a similar size. This includes modular frame rails, condenser, fans, compressors, and evaporator.

The chiller consists of two screw compressors in a corresponding number of separate refrigerant circuits, a hybrid falling film evaporator, an air-cooled condenser, receiver/flash tanks, feed valves, oil separators, and compressor mufflers.

Figure 1 - YVAA air-cooled screw liquid chiller with variable speed drive

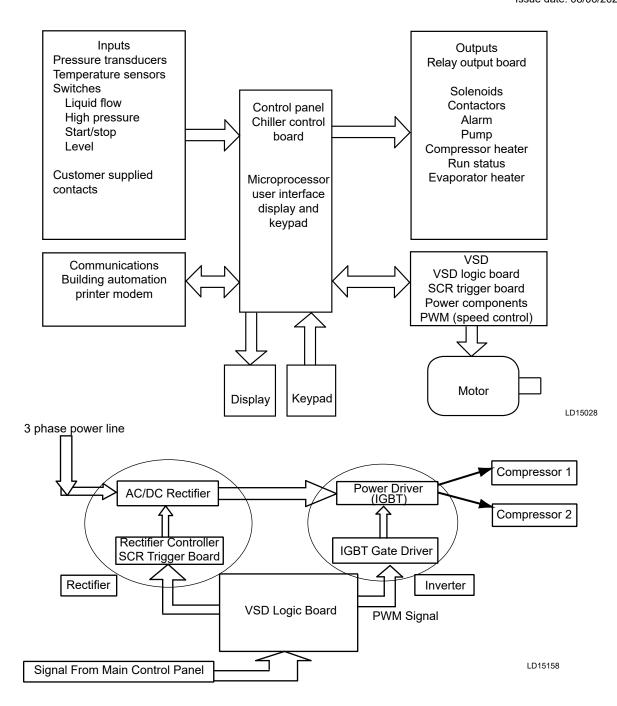


Figure 2 - Chiller control system

Oil separators utilize no moving parts.Oil cooling is accomplished by refrigerant leaving the eductor flashing in the suction line which cools the oil, motor and compressor.

An integral liquid cooled, transistorized, PWM, Variable Speed Drive (VSD) is controlled by the chiller microprocessor control panel to start/stop, select compressors to run, and select compressor speed. Displacement Power Factor is 0. 95 at part or full load.

The chiller microprocessor communicates with the VSD Logic Board using a 3-wire RS-485 opto coupled data link. The VSD Logic Board runs the number of compressors required to meet the load and the compressors to the speed requested by the chiller microprocessor.

The basic system control and VSD system architecture is shown in *Figure 2 on page 16*.

Semi-hermetic YORK twin-screw compressors

Compressors are direct drive, semi-hermetic amd rotary twin-screw type, including: muffler, temperature actuated 'off-cycle' heater, IP55 terminal board and precision machined cast iron housing.

Reliable suction gas cooled, high efficiency, accessible hermetic compressor motor, full suction gas flow through mesh screen filter, with inherent internal thermal overload protection and external current overload on all three phases.

Continuous function, microprocessor controlled, Variable Speed Drive (VSD) must provide valve-less, smooth capacity control from 100% down to 10% of chiller capacity.

In addition, elimination of the slide valve and associated unloading components has resulted in a 50% reduction in compressor moving parts.

Evaporator

The evaporator is a shell and tube, hybrid falling film type heat exchanger. It contains a balance of flooded and falling film technology to optimize efficiency, minimize refrigerant charge, and maintain reliable control. A specifically designed distribution system provides uniform refrigerant flow for optimum performance.

Condenser

The YVAA introduces micro-channel coil to the YORK screw compressor chiller line. The micro-channel maximizes condenser heat transfer, resulting in a smaller footprint, and reduces refrigerant charge by as much as 50%.

Each condenser coil is a single piece all aluminum construction including headers, tubes and fins to avoid galvanic corrosion due to dissimilar metals. Coils and headers are brazed as one piece. Integral subcooling is included. The design working pressure is 375 psig (25.9 barg).

Multiple, standard low sound, high efficiency, TEAO motor driven fans move air through the coils. They are dynamically and statically balanced, direct drive with corrosion-resistant glass fiber reinforced composite blades molded into low-noise, full airfoil cross sections, providing vertical air discharge from extended orifices for efficiency and low sound.

Fan motors are Totally Enclosed Air-Over (TEAO), squirrel-cage type and current protected. The direct drive motors feature double-sealed and permanently lubricated ball bearings, cutting down on maintenance cost over the life of the unit.

Refrigerant circuit

An independent refrigerant circuit is provided per compressor. Each circuit uses copper refrigerant pipe formed on computer controlled bending machines to reduce the number of brazed joints resulting in a reliable and leak resistant system.

- Discharge lines are provided with a manual compressor shutoff service valve See *Accessories and Options on Page 19*, for suction line service valve).
- The external oil separators, with no moving parts and designed for minimum oil carry-over, are mounted in the discharge line of the compressor.
- Liquid line components include: high absorption removable core filter-drier, sight glasses with moisture indicators, manual shut-off valve with charging port, orifice and electronic expansion valve.
- An economizer (flash) tank is located in each refrigerant circuit to increase the system efficiency.

Electrical

Johnson Controls has over 25 years of experience designing variable-speed drives specifically for chiller applications. The result is an extremely reliable aircooled chiller system that offers industry leading efficiency at real world operating conditions, valve-less compressor loading/unloading, excellent capacity control, high power factor and soft start..

Incoming single point power is standard utilizing a lockable circuit breaker, 115 VAC control transformer, VSD, fan contactors, ON/OFF unit switch, microcomputer keypad and display, Chiller Control and VSD Logic boards, and relay boards.

Standard design includes IP55 rating, powder painted steel cabinet with hinged, latched, and gasket sealed outer doors equipped with wind struts for safer servicing. The panel includes a control display access door so that display and control features can be accessed with-

Form 201.28-NM1.1 Issue date: 08/06/2021

out opening main cabinet doors. All exposed power wiring is routed through liquid-tight, UV-stabilized, non-metallic conduit.

Building automation system capabilities

The E-Link Gateway provides an economical and versatile connection between YORK equipment and open/ standard protocols. It efficiently manages the communication protocols currently used by YORK equipment, exposing the data in a consistent, organized, and defined fashion. The E-Link Gateway is available as a field-installed option on YVAA. A simple switch selection allows configuration of the required equipment profile and output protocol, which reduces equipment connectivity startup time.

Microcomputer control center

The microcomputer control center (see Figure 3 on page 18) provides automatic control of chiller operation including compressor start/ stop and load/ unload anti-recycle timers, condenser fans, evaporator pump, evaporator heater, unit alarm contacts and run signal contacts. The microcomputer control center comes online as soon as the main power switch on the unit is switched on; immediately, the microcomputer control center will begin to check all variables with a frequency ranging from 30 seconds to almost continuous monitoring.

The microprocessor controls the unit's capacity by matching the actual leaving chilled water temperature (LCWT) to the user-defined setpoint. Factors that may cause the system's actual LCWT to fluctuate are changes in ambient temperature, loop flow rate, load, and loop volume. The control system reacts to such changes by adjusting the number of compressors that are on and the loading of each compressor in order to keep the LCWT at the setpoint.

The control system logic monitors the rate at which the LCWT is approaching the setpoint to ramp up or down compressor capacity as required. Variable frequency drive allows the compressor capacity to match the load.

Display data

- Leaving Chilled Liquid Temperature
- Returning Liquid Temperature
- Ambient Temperature
- Lead System
- Compressor Capacity (% of Full Load Amps)

- VSD Output Frequency / Compressor Speed
- Compressor Run Hours
- Compressor Number of Starts
- Oil Pressure and Temperature (per Compressor)
- Evaporator Pump Status
- Evaporator Heater Status
- History Data for Last Twenty Normal Shutdowns
- History Data for Last Ten Shutdown Faults

Programmable setpoints

- · Chiller On/Off
- Chilled Liquid (Water or Glycol)
- · Local or Remote Control
- Units of Measure (Imperial or SI)
- System Lead or Lag
- Remote Temperature Reset
- Remote Current Limit
- Leaving Chilled Liquid Temperature Setpoint and Range

Figure 3 - View of YORK control center user interface

Johnson Controls' systems or another vendor's systems can incorporate these setpoints and data outputs to give the customer a complete understanding of how the system is running through a Building Automation System.

Extreme Conditions – During extreme or unusual conditions (that is, blocked condenser coils, ambient above scheduled maximum, and so on) the chiller control system will avoid shutdown by varying capacity. By monitoring motor current and suction and discharge pressures, the chiller can maintain maximum available cooling output without shutting down.

Unit Safeties are provided for the chiller to perform auto-reset shut down for the following conditions:

- Ambient temperature above or below allowable range
- Out of range leaving chilled liquid temperature
- · Under voltage
- Flow switch operation

Accessories and options

All options factory mounted unless otherwise noted.

Sound attenuation

Low Noise Kits – The standard chiller configuration is equipped with low sound fans and acoustic treatments on the refrigerant lines and compressors. There are several sound attenuation options available to further reduce sound at its source thereby meeting local sound level regulations.

SilentNightTM – Due to time of day based sound regulations in some locations it may be desirable to force the chiller to a lower sound level on demand. The SilentNightTM control option provides a control input to limit sound output of the chiller based on time of day. This feature is programmable at the chiller panel or can be controlled remotely using a signal (4 mA to 20 mA or 0 VDC to 10 VDC) from a BAS system.

Fan options

Ultra Quiet Fans – The chiller is equipped with specially designed fans and motors to provide lower sound levels yet retain appropriate airflow. The result is reduced fan generated sound with minimal effect on the chiller capacity or efficiency.

High Static Fans – The chiller is equipped with condenser fans with higher power motors suitable for high external static pressure, up to 100 Pa (0.4 water), across

condenser coils. This option should be selected if additional airflow resistance may be present due to flow restrictions such as field installed ducts, filters, sound enclosures and so on. Contact your local JCI representative for more information.

High Airflow Fans – The chiller is equipped with condenser fans with airfoil type blades and high power motors providing extra airflow across coils. In some chiller configurations, this option can provide an increase in chiller capacity at high ambient. The high airflow fans are also available with variable speed control. Contact your local JCI representative for more information.

Condenser coils

Fin and tub condenser coils of seamless, internally-enhanced, high-condensing-coefficient, corrosion resistant copper tubes are arranged in staggered rows. The tubes are mechanically expanded into aluminum fins. Integral subcooling is included. The design working pressure of the coils is 350 psig (24 barg).

Condenser coil protection

The aluminum alloys used in the YVAA micro-channel condenser have been carefully selected and tested for high corrosion resistance. However, all metals can corrode in harsh conditions. Consider protecting coils from corrosive environments such as coastal, marine, urban and industrial.

Post-Coated Epoxy Dipped Condenser — Microchannel condenser coils applied with electro-deposited and baked flexible epoxy coating that is finished with a polyurethane UV resistant top-coat suitable for highly corrosive applications.

Protective chiller panels

Wire Panels – UV stabilized black polyvinyl chloride coated, heavy gauge, welded wire mesh guards mounted on the exterior of the full unit. Protects condenser coil faces and prevents unauthorized access to refrigerant components (compressors, pipes, evaporator, and so on), yet provides free air flow. This can cut installation cost by eliminating the need for separate, expensive fencing.

Louvered Panels – Louvered panels, painted the same color as the unit, enclose the unit to visually screen and protect the coils as well as preventing unauthorized access to internal components. Also available as a condenser-only option.

Form 201.28-NM1.1 Issue date: 08/06/2021

Louvered/Wire Panels Combination – Louvered panels, painted the same color as the unit, are mounted on external condenser coil faces. Heavy gauge, welded wire-mesh panels, coated to resist corrosion, are mounted around base of machine to restrict unauthorized access.

End Hail Guard – Louvered panels, painted with the same color as the unit, are installed on the rear of the unit (opposite end of the control panel) to protect the exposed condenser from flying debris or hail.

V-Guard Panels – Solid panels, painted the same color as the unit, are installed along the sides of the units to cover exposed piping within the condenser section without impacting airflow. These guard panels can be combined with End Hail Guard option for additional protection from debris.

Evaporator options

38 mm insulation – Double thickness insulation provided.

Flange Kit – Provides contractor with the couplings best suited to tie into the chilled water piping. All flanges are PN10.

Connection Location – The standard unit configuration is available with fluid inlet connections at rear (opposite control panel end) of unit. Option available for front fluid inlet on select configurations.

Water Box Heater – Unless an appropriate freeze protection fluid is used in the chilled fluid circuit, optional water box heaters are required if the chiller is exposed to environments that reach ambient temperatures below 0°F (-17.8°C). When the water box heaters are operated along with other required freeze protection protocols, they assist in protecting the evaporator from freeze damage in ambient temperatures down to -20°F (-28°C). A separate, customer supplied 120 V/60 Hz or 230 V/50 Hz single phase power supply is required to provide power to the water box heaters. In order to control the operation of the water box heaters, continuous power must be provided to the chiller control panel. See the *Application Data* section for the requirements for protection against freeze damage.

Controls Options

High Ambient Operation – This provides special control logic coupled with high airflow fans to permit high ambient up to 52°C (125°F) operation. Fans are airfoil type blades with high power motors. This option may also allow for increased machine capacity, allowing the selection of a smaller chassis to meet specific capacity requirements.

Building Automation System Interface (Temperature) – Factory installed option to accept a 4 mA to 20 mA or a 0 VDC to 10 VDC input to allow remote reset of the Leaving Chilled Liquid Temperature Setpoint. The setpoint can be positively offset upwards up to 22.2°C (40°F). This option is useful for ice storage or process applications or for periods where higher chilled liquid temperatures are adequate for low loads. Available alone or in combination with BAS Load Limit.

Building Automation System Interface (Load Limit) – Factory installed option to accept a 4 mA to 20 mA or a 0 VDC to 10 VDC input to allow remote reset of the Load Limit Setpoint. The setpoint can limit system demand from 30% to 100%. Available alone or in combination with BAS Temperature Reset.

E-Link – The optional E-Link gateway provides communication between the equipment and Building Automation Systems, including BACnet (MS/TP), Modbus, LON, and N2.

Thermal Storage – Provides special control logic and modifications to produce leaving chilled brine temperatures below 4.4°C (40°F) primarily at times of low ambient temperatures (night time). Option can be used to produce ice to supplement cooling and significantly decrease energy costs. The capability of the chiller is enhanced by using both ice and chilled water simultaneously during times of peak cooling needs.

General options

Flow Switch Accessory – Vapor proof SPDT, NEMA 3R switch, 10.3 barg (150 psig) DWP, -29°C to 121°C (-20°F to 250°F) with 1 in. NPT (IPS) connection for upright mounting in horizontal pipe. This flow switch or equivalent must be furnished with each unit. Field mounted.

Differential Pressure Switch – This 0.2 barg to 3 barg (3 psig to 45 psig) range switch, with 1/4 in. NPTE pressure connections, is an alternative to the paddle-type flow switch. **Field mounted.**

Thermal Dispersion Flow Switch – Alternative to the paddle-type flow switch and differential pressure switch, this electronic flow switch requires 115 VAC 50 Hz or 60 Hz power supply. **Field mounted.**

Service Isolation Valve – Service suction isolation valve added to unit for each refrigerant circuit.

Dual Pressure Relief Valve – Two safety relief valves are mounted in parallel; one is always operational to assist in valve replacement during maintenance.

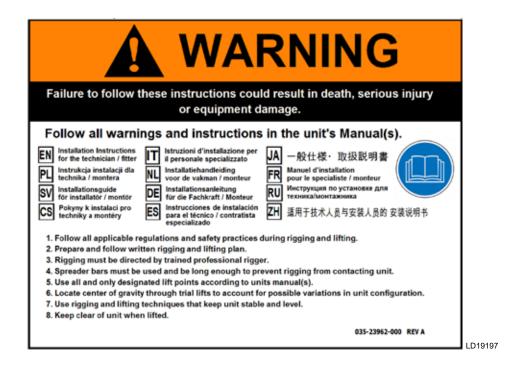
Terminal Block [not available for CE marked units] Terminal Block connections must be provided at the point of incoming single point connection for field connection and interconnecting wiring to the compressors. Separate external protection must be supplied, by others, in the incoming power wiring, which must comply with local codes.

Circuit Breaker – A unit-mounted circuit breaker with external lockable handle will be supplied to isolate the single point power voltage for servicing. The circuit breaker is sized to provide motor branch circuit protection, short circuit protection and ground fault protection for the motor branch-circuit conductors, the motor control apparatus and the motors.

Non-Fused Disconnect Switch – Unit-mounted disconnect switch with external lockable handle can be supplied to isolate the unit power voltage for servicing. Separate external fusing must be supplied by the power wiring, which must comply with local codes.

Vibration isolation

Elastomeric Isolation – This option is recommended for normal installations. It provides very good performance in most applications for the least cost. **Field mounted.**


25 mm (1 in.) Spring Isolators – Spring and cage type isolators for mounting under the unit base rails are available to support unit. They are level adjustable. 25 mm (1 in.) nominal deflection may vary slightly by application. Field mounted.

50 mm (2 in.) Restrained Spring Isolators – Restrained Spring-Flex Mounting isolators incorporate a rugged welded steel housing with vertical and horizontal limit stops. Housings designed to withstand a minimum 1.0g accelerated force in all directions up to 51 mm (2 in.). The deflection may vary slightly by application. They are level adjustable. **Field mounted.**

FORM 201.28-NM1.1 ISSUE DATE: 12/18/2020

THIS PAGE IS INTENTIONALLY LEFT BLANK

Section 3 - Rigging, handling, and storage

Rigging and lifting should only be done by a professional rigger in accordance with a written rigging and lifting plan. The most appropriate rigging and lifting method will depend on job specific factors, such as the rigging equipment available and site needs. Therefore, a professional rigger must determine the rigging and lifting method to be used, and it is beyond the scope of this manual to specify rigging and lifting details.

Lifting weights

Refer to the unit nameplate for unit shipping weight. Note that weight may vary depending on unit configuration at the time of lifting. See *Table 5 on page 64* or *Table 6 on page 68* for further information regarding shipping and operating weights.

Delivery and storage

To ensure consistent quality and maximum reliability, all units are tested and inspected before leaving the factory. Units are shipped completely assembled and containing refrigerant under pressure. Units are shipped without export crating unless crating has been specified on the Sales Order.

If the unit is to be put into storage, before installation, the following precautions should be observed:

- The chiller must be "blocked" so that the base is not permitted to sag or bow.
- Ensure that all openings, such as water connections, are securely capped.
- Do not store where exposed to high ambient air temperatures that may exceed relief valve settings. Refer to *Long-Term Storage Requirement* Field Preparation (Form 50.20-NM7).
- The condensers should be covered to protect the coils and fins from potential damage and corrosion, particularly where building work is in progress.
- The unit should be stored in a location where there is minimal activity in order to limit the risk of accidental physical damage.
- To prevent inadvertent operation of the pressure relief devices the unit must not be steam cleaned.
- It is recommended that the unit is periodically inspected during storage.

Form 201.28-NM1.1 Issue date: 08/06/2021

Inspection

Remove any transit packing and inspect the unit to ensure that all components have been delivered and that no damage has occurred during transit. If any damage is evident, it should be noted on the carrier's freight bill and a claim entered in accordance with the instructions given on the advice note.

Major damage must be reported immediately to your local Johnson Controls representative.

Moving the chiller

Before moving the unit, ensure that the installation site is suitable for installing the unit and is easily capable of supporting the weight of the unit and all associated services.

The unit must only be lifted by the base frame at the points provided. Never move the unit on rollers, or lift the unit using a forklift truck.

Care must be taken to avoid damaging the condenser cooling fins when moving the unit.

Unit removal from shipping container

- 1. Place a clevis pin into the holes provided at the end of each base rail on the unit. Attach chains or nylon straps through the clevis pins and hook onto a suitable lift truck for pulling the unit out of the container.
- 2. Slowly place tension on the chains or straps until the unit begins to move and then slowly pull the unit from the container. Be sure to pull straight so the sides do not scrape the container.
- 3. Place a lifting fixture on the forks of the lift truck and reattach the chain or strap. Slightly lift the front of the unit to remove some weight from the floor of the container. Continue pulling the unit with an operator on each side to guide the lift truck operator.
- 4. Pull the unit until the lifting locations are outside of the container. Place 4 X 4 blocks of wood under the base rails of the unit. Gently rest the unit on the blocks and remove the chains and lift truck.
- 5. Attach lifting rigging from the crane and slowly complete the removal from the container then lift up and away.

Lifting using lugs

Units are provided with lifting holes in the base frame which accept the accessory lifting lug set as shown in *Figure 4*. The lugs (RH and LH) should be inserted into the respective holes in the base frame and turned so that the spring loaded pin engages into the hole and the flanges on the lug lock behind the hole. The lugs should be attached to the cables/chains using shackles or safety hooks.

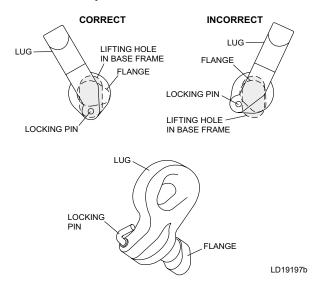


Figure 4 - Lifting using lugs

Lifting using shackles

The shackles should be inserted into the respective holes in the base frame and secured from the inside.

- Use spreader bars to avoid lifting chains hitting the chiller. Various methods of spreader bar arrangements may be used, keeping in mind the intent is to keep the unit stable and to keep the chains from hitting the chiller and causing damage.
- Never lift the chiller using a forklift or by hooking to the top rails. Use only the lifting holes provided.
- Lifting Instructions are placed on a label on the chiller and on the shipping bag.

THIS PAGE IS INTENTIONALLY LEFT BLANK

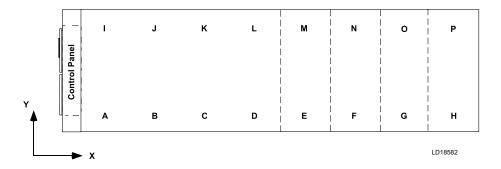


Table 1 - Unit rigging

YVAA model			Description	Units	Rigging holes								
Frame	Cond	Evap	•		Α	В	С	D	E	F	G	Н	
015	3	В	Rigging hole	in.	18	60	116	192					
010	,	В	location	mm	464	1512	2937	4866					
016	5	В	Rigging hole	in.	18	60	137	214					
010		В	location	mm	464	1533	3482	5435					
017	8	С	Rigging hole	in.	12	73	144	197	260				
017	0		location	mm	314	1845	3654	5012	6593				
018	2	3 A	Rigging hole	in.	18	60	143	220					
010	,	^	location	mm	464	1533	3636	5598					
010	_	A	Rigging hole location	in.	18	60	143	227	272				
019	019 5			mm	464	1533	3636	5761	6920				
019	8	В	Rigging hole	in.	18	60	137	215	302				
019	0	В	location	mm	464	1533	3484	5455	7670				
020	0	С	Rigging hole	in.	18	60	131	214					
020	0		location	mm	464	1518	3332	5430					
021	3	Α	Rigging hole	in.	18	60	143	227	272				
U2 I	<u> </u>	_ A	location	mm	464	1533	3637	5761	6920				
021	E	С	Rigging hole	in.	12	73	144	197	260				
U2 I	21 5	'	location	mm	314	1845	3654	5012	6593				
021	0	_	Rigging hole	in.	12	73	163	254	324				
UZT	8	C	С	location	mm	314	1845	4144	6443	8218			

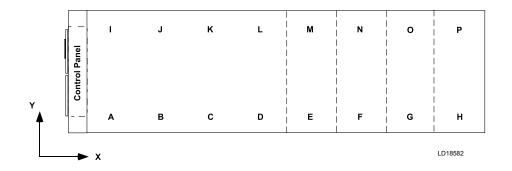


Table 1 - Unit rigging (cont'd)

Y	VAA mod	el	Description	Units	Rigging holes								
Frame	Cond	Evap	-		ı	J	K	L	М	N	0	Р	
015	3	В	Rigging hole location	in.	18	60	116	192					
015	,	В		mm	464	1511	2937	4866					
016	5	В	Rigging hole	in.	18	60	137	214					
016	5	В	location	mm	464	1533	3485	5435					
017	8	С	Rigging hole	in.	12	73	144	197	260				
017	0	J	location	mm	314	1845	3654	5012	6593				
018	3 A	2		Rigging hole	in.	18	60	143	220				
010	,		location	mm	464	1533	3636	5598					
019	5	A	Rigging hole location	in.	18	60	143	227	272				
019				mm	464	1533	3636	5761	6920				
019	8	В	Rigging hole	in.	18	60	137	215	302				
019	Ů		location	mm	464	1533	3484	5455	7670				
020	0	С	Rigging hole	in.	60	131	214						
020	•		location	mm	1518	3332	5430						
021	3	Α	Rigging hole	in.	18	60	143	227	272				
UZ 1			location	mm	464	1533	3637	5761	6920				
021	5	С	Rigging hole	in.	12	73	144	197	260				
UZ I			location	mm	314	1845	3654	5012	6593				
021	Q	C	Rigging hole	in/	12	73	163	254	324				
021 8		C	С	location	mm	314	1845	4144	6443	8218			

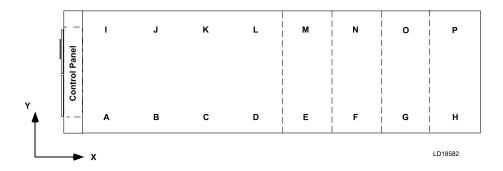


Table 1 - Unit rigging (cont'd)

Y	VAA mode	el	Description	Units	Rigging holes									
Frame	Cond	Evap	•		Α	В	С	D	E	F	G	Н		
023	3 E	В	Rigging hole	in.	18	60	137	215	272					
023	3	ь	location	mm	464	1533	3485	5456	6919					
024	5	С	Rigging hole	in.	18	60	149	240	324					
024	5		location	mm	464	1533	3789	6088	8218					
024	8	С	Rigging hole	in.	12	73	163	254	347					
024		J	location	mm	314	1845	4144	6443	8825					
026	3	3 B	R	Rigging hole	in.	18	60	137	215	302				
020			location	mm	464	1533	3484	5455	7670					
027	3	D	Rigging hole	in.	12	73	121	181	264	324				
027	3	U	location	mm	314	1845	3073	4601	6717	8217				
027	5	E	Rigging hole	in.	12	73	121	181	264	324				
027	3	_	location	mm	314	1845	3073	4601	6717	8218				
027	8	E	Rigging hole	in.	12	73	121	181	243	347				
027	8	L	location	mm	314	1845	3073	4601	6169	8825				
029	5	E	Rigging hole	in.	12	73	179	290	347					
029	3	E	location	mm	314	1845	4551	7358	8825					
030	2	С	Rigging hole	in.	12	73	161	254	347					
030	3	3	3	נ	location	mm	314	1845	4092	6443	8825			

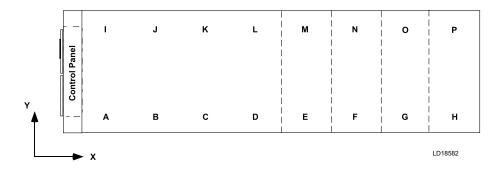


Table 1 - Unit rigging (cont'd)

YVAA model		Description	Units	Rigging holes									
Frame	Cond	Evap	Dodomption		ı	J	K	L	М	N	0	Р	
023		В	Rigging hole	in.	18	60	137	215	272				
023	3		location	mm	464	1533	3485	5456	6919				
024	5	С	Rigging hole	in.	18	60	149	240	324				
024	ก		location	mm	464	1533	3789	6088	8218				
024		С	Rigging hole	in.	12	73	163	254	347				
024	4 8		location	mm	314	1845	4144	6443	8825				
026	2	В	Rigging hole	in.	18	60	137	215	302				
026	026 3		location	mm	464	1533	3484	5455	7670				
027	3	D	Rigging hole	in.	12	73	121	181	264	324			
027	3	U	location	mm	314	1845	3073	4601	6717	8218			
027	5	E	Rigging hole location	in.	12	73	121	181	264	324			
021	ס			mm	314	1845	3073	4601	6717	8218			
027	8	E	Rigging hole	in.	12	73	121	181	243	347			
027	0		location	mm	314	1845	3073	4601	6169	8825			
029	_	_	Rigging hole	in.	12	73	179	290	347				
UZS	5	5 E	5 E location	location	mm	314	1845	4551	7358	8825			
020	3	С	Rigging hole	in.	12	73	161	254	347				
030	3		location	mm	314	1845	4092	6443	8825				

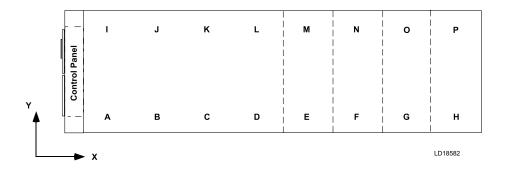


Table 1 - Unit rigging (cont'd)

Y	VAA mod	el	Description	Units	Rigging holes								
Frame	Cond	Evap	·		Α	В	С	D	E	F	G	Н	
030	200 5	С	Rigging hole	in.	12	73	161	254	306	391			
030	5		location	mm	314	1845	4092	6443	7763	9941			
030	8 E	E	Rigging hole	in.	12	73	121	179	243	296	391		
030	0	_	location	mm	314	1845	3072	4549	6169	7508	9942		
031	8	_	E Rigging hole location	in.	12	73	121	179	243	353	435		
031	0	E		mm	314	1845	3072	4549	6169	8962	11059		
032	3	E	Rigging hole	in.	12	73	121	181	243	347			
032	,		location	mm	314	1845	3073	4601	6169	8825			
033	,	С	Rigging hole	in.	12	73	163	254	306	391			
033	3		location	mm	314	1845	4144	6443	7765	9942			
034	3	E	Rigging hole	in.	12	73	121	181	243	296	391		
034	<u> </u>		location	mm	314	1845	3073	4602	6170	7511	9942		
034	5	E	Rigging hole	in.	12	73	121	181	243	353	435		
034	5		location	mm	314	1845	3073	4602	6170	8961	11059		
036	8		Rigging hole	in.	12	73	181	238	302	392	434	501	
036		J	location	mm	314	1845	4602	6039	7662	9957	11024	12725	
037	2	F	Rigging hole	in.	12	73	181	238	302	435			
037	7 3		location	mm	314	1845	4602	6039	7662	11059			
037	-		Rigging hole	in.	12	73	181	238	302	435			
037		5 I	location	mm	314	1845	4602	6039	7662	11059			

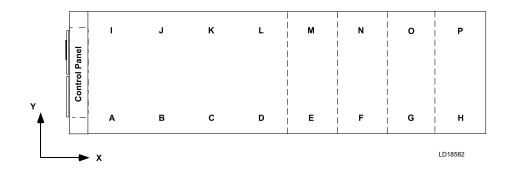


Table 1 - Unit rigging (cont'd)

YVAA model			Description	Units	Rigging holes								
Frame	Cond	Evap	- 		I	J	K	L	М	N	0	Р	
030	5		Rigging hole location	in.	12	73	161	254	306	391			
	5	С		mm	314	1845	4092	6443	7763	9941			
030	8	E	Rigging hole location	in.	12	73	121	179	243	296	391		
030	0			mm	314	1845	3072	4549	6169	7508	9942		
031	8	Е	Rigging hole location	in.	12	73	121	179	243	353	435		
031				mm	314	1845	3072	4549	6169	8962	11059		
032	3	E	Rigging hole location	in.	12	73	121	181	243	347			
032	032 3			mm	314	1845	3073	4601	6169	347			
033	3	С	Rigging hole location	in.	12	73	163	254	306	391			
033				mm	314	1845	4144	6443	7765	9942			
034	3	E	Rigging hole location	in.	12	73	121	181	243	296	391		
				mm	314	1845	3073	4602	6170	7511	9942		
034	5	E	Rigging hole	in.	12	73	121	181	243	353	435		
004			location	mm	314	1845	3073	4602	6170	8961	11059		
036	8	J	Rigging hole	in.	12	73	181	238	302	392	434	501	
			location	mm	314	1845	4602	6039	7662	9957	11024	12725	
037	3	3 F	Rigging hole	in.	12	73	181	238	302	435			
	3	<u>'</u>	location	mm	314	1845	4602	6039	7662	11059			
037	_		Rigging hole	in.	12	73	181	238	302	435			
037		5 I	location	mm	314	1845	4602	6039	7662	11059			

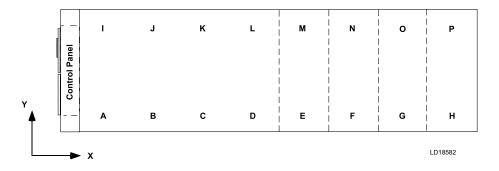


Table 1 - Unit rigging (cont'd)

YVAA model			Description	Units	Rigging holes								
Frame	Cond	Evap	•		Α	В	С	D	E	F	G	Н	
039	8		Rigging hole location	in.	12	73	181	238	302	435	478	545	
	0	J		mm	314	1845	4602	6039	7358	11059	12135	13835	
041	3	Н	Rigging hole location	in.	12	73	181	238	302	435			
041	,			mm	314	1845	4601	6039	7662	11059			
042	5	н	Rigging hole location	in.	12	73	181	238	302	435	478	545	
042	3	П		mm	314	1845	4602	6039	7358	11059	12135	13835	
042	8	J	Rigging hole location	in.	12	73	181	238	302	435	494	572	
042	•			mm	314	1845	4602	6039	7358	11059	12546	14541	
044	3	G	Rigging hole location	in.	12	73	181	238	290	435	478	545	
	,			mm	314	1845	4602	6039	7662	11059	12135	13835	
047	5	J	Rigging hole location	in.	12	73	181	238	290	435	494	572	
047	J41 3	3		mm	314	1845	4602	6039	7358	11059	12546	14541	
048	3	G	Rigging hole	in.	12	73	181	238	290	435	494	572	
U46	,	"	location	mm	314	1845	4602	6039	7358	11059	12546	14529	
049	•	0 K	Rigging hole	in.	12	73	181	238	290	435			
049	U		location	mm	305	1854	4597	6045	7366	11049			
050	0	J	Rigging hole location	in.	12	73	181	238	290	435		572	
U5U				mm	305	1854	4597	6045	7366	11049		14529	
052	,		Rigging hole	in.	12	73	181	238	290	435	494	572	
052	3	J	location	mm	305	1854	4597	6045	7366	11049	12548	14529	

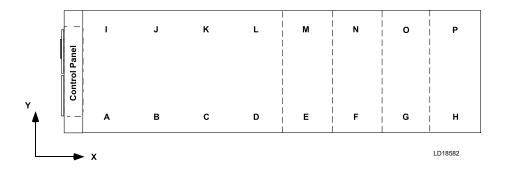


Table 1 - Unit rigging (cont'd)

YVAA model			Description	Units	Rigging holes								
Frame	Cond	Evap	-		ı	J	K	L	М	N	0	Р	
039 8	۰	J	Rigging hole location	in.	12	73	181	238	302	435	478	545	
	0			mm	314	1845	4602	6039	7358	11059	12135	13835	
041	3	Н	Rigging hole location	in.	12	73	181	238	302	435			
041	,	П		mm	314	1845	4601	6039	7662	11059			
042	5	н	Rigging hole	in.	12	73	181	238	302	435	478	545	
042	3	П	location	mm	314	1845	4602	6039	7358	11059	12135	13835	
042	8	J	Rigging hole location	in.	12	73	181	238	302	435	494	572	
042	042 0			mm	314	1845	4602	6039	7358	11059	12546	14541	
044	3	G	Rigging hole location	in.	12	73	181	238	290	435	478	545	
U44	,	9		mm	314	1845	4602	6039	7358	11059	12135	13835	
047	5	J	Rigging hole location	in.	12	73	181	238	290	435	494	572	
047	,			mm	314	1845	4602	6039	7358	11059	12546	14541	
048	3	G	Rigging hole location	in.	12	73	181	238	290	435			
040				mm	305	1854	4597	6045	7366	11049			
049	0	к	Rigging hole location	in.	12	73	181	238	290	435			
049				mm	305	1854	4597	6045	7366	11049			
050	0	J	Rigging hole location	in.	12	73	181	238	290	435			
030	U			mm	305	1854	4597	6045	7366	11049			
052	2	J	Rigging hole	in.	12	73	181	238	290	435	494	572	
U52	3		location	mm	305	1854	4597	6045	7366	11049	12548	14529	

FORM 201.28-NM1.1 ISSUE DATE: 12/18/2020

THIS PAGE IS INTENTIONALLY LEFT BLANK

1

Section 4 - Installation

Location requirements

For optimum performance and trouble-free service, it is essential that the installation site meet the location and space requirements for the model being installed.

It is important to ensure that the minimum service access space is maintained for cleaning and maintenance purposes.

Outdoor installations

The units are designed for outdoor installation and can be installed at ground level on a suitable flat level foundation easily capable of supporting the weight of the unit, or on a suitable rooftop location. In both cases an adequate supply of air is required. Avoid locations where the sound output and air discharge from the unit may be objectionable.

The location should be selected for minimum sun exposure and away from boiler flues and other sources of airborne chemicals that could attack the condenser coils and steel parts of the unit.

If located in an area accessible to unauthorized persons, steps must be taken to prevent access to the unit by means of a protective fence. This will help to prevent the possibility of vandalism, accidental damage, or possible harm caused by unauthorized removal of protective guards or opening panels to expose rotating or high voltage components.

For ground level locations, the unit must be installed on a suitable flat and level concrete base that extends to fully support the two side channels of the unit base frame. A one-piece concrete slab, with footings extending below the frost line is recommended. To avoid noise and vibration transmission, the unit should not be secured to the building foundation.

On rooftop locations, choose a place with adequate structural strength to safely support the entire operating weight of the unit and service personnel. The unit can be mounted on a concrete slab, similar to ground floor locations, or on steel channels of suitable strength. The channels should be spaced with the same centers as the unit side and front base rails. This will allow vibration isolators to be fitted if required. Isolators are recommended for rooftop locations.

Mounting holes (5/8 in.) are provided in the base rails for bolting the unit to its foundation. See *Table 10 on page 84* for location of the mounting holes.

Any ductwork or attenuators fitted to the unit must not have a total static pressure resistance, at full unit airflow, exceeding the capability of the fans installed in the unit.

The condenser fans are propeller-type and are not recommended for use with ductwork, filters or other impediments to airflow in the condenser air stream.

When it is desirable to surround the units in addition to the optional louver package selected, it is recommended that the screening passes the required chiller CFM without exceeding 0.1 w.g. (24.9084 Pa) external static pressure.

Protection against corrosive environments is available by ordering the units with cured epoxy-coating on the microchannel condenser coil. Epoxy-coated coils should be used with any units being installed at the seashore where salt spray/mist may hit the units, or where acid rain is prevalent.

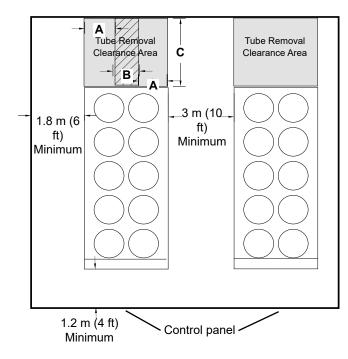
On installations where winter operation is intended and snow accumulations are expected, additional elevation must be provided to ensure normal condenser air flow.

Avoid locations near windows or structures where normal operating sounds may be objectionable.

Location clearances

Adequate clearances around the units are required for the unrestricted airflow for the air-cooled condenser coils and to prevent re-circulation of warm discharge air back onto the coils. If clearances given are not maintained, airflow restriction or re-circulation will cause a loss of unit performance, an increase in power consumption, and may cause the unit to malfunction. Consideration should also be given to the possibility of down drafts, caused by adjacent buildings, which may cause re-circulation or uneven unit airflow.

For locations where significant cross winds are expected, such as exposed roof tops, an enclosure of solid or louver type is recommended to prevent wind turbulence interfering with the unit airflow.


When units are installed in an enclosure, the enclosure height should not exceed the height of the unit on more than one side. If the enclosure is of louvered construction, the same requirement of static pressure loss applies as for ducts and attenuators stated above.

SECTION 4 - INSTALLATION Form 201.28-NM1.1 Issue date: 08/06/2021

Recommended minimum clearances

Recommended clearances for the YVAA units are:

- Side to wall -6 ft (1.8 m)
- Rear to wall 6 ft (1.8 m)
- Control panel end to wall 4 ft (1.2 m)
- Top no obstructions whatsoever
- Distance between adjacent units 10 ft (3 m)

Figure 5 - Acceptable minimum clearances around and between units

Clearance dimensions provided in Figure 5 on page 36 and Table 2 on page 36 are necessary to maintain good airflow and ensure correct unit operation. It is also necessary to consider access requirements for safe operation and maintenance of the unit and power and control panels. Local health and safety regulations, or practical considerations for service replacement of large components, may require larger clearances than those recommended.

Table 2 - Minimum evaporator tube removal clearance

	Tube removal clearance dimensions							
Mod	lel YVA	A		Cleara	<u>aimen</u> 3	C		
Frame	Cond	Evap	in.	mm	in.	mm	in.	mm
015	3	В	26	663	36	914	132	3353
016	5	В	26	663	36	914	132	3353
017	8	С	26	663	36	914	156	3962
018	3	Α	26	663	36	914	144	3658
019	5	Α	26	663	36	914	144	3658
019	8	В	26	663	36	914	144	3658
020	0	С	26	663	36	914	156	3962
021	3	Α	26	663	36	914	156	3962
021	5	С	26	663	36	914	156	3962
021	8	С	26	663	36	914	156	3962
023	3	В	26	663	36	914	132	3353
024	5	С	26	663	36	914	156	3962
024	8	С	26	663	36	914	156	3962
026	3	В	26	663	36	914	132	3353
027	0	D	26	663	36	914	192	4877
027	3	D	26	663	36	914	192	4877
027	5	Е	26	663	36	914	192	4877
027	8	Е	26	663	36	914	192	4877
029	5	Е	26	663	36	914	192	4877
030	3	С	26	663	36	914	156	3962
030	5	Е	26	663	36	914	156	3962
030	8	Е	26	663	36	914	156	3962
031	8	Е	26	663	36	914	192	4877
032	3	Е	26	663	36	914	192	4877
033	3	С	26	663	36	914	156	3962
034	3	Е	26	663	36	914	192	4877
034	5	Е	26	663	36	914	192	4877
036	8	J	26	663	36	914	192	4877
037	3	F	26	663	36	914	144	3658
037	5	J	26	663	36	914	192	4877
039	8	J	26	663	36	914	192	4877
041	3	Н	26	663	36	914	192	4877
042	5	Н	26	663	36	914	144	3658
042	8	J	26	663	36	914	192	4877
044	3	G	26	663	36	914	144	3658
047	5	J	26	663	36	914	192	4877
048	3	G	26	663	36	914	144	3658
049	0	K	26	663	36	914	192	4877
050	0	J	26	663	36	914	192	4877
052	3	J	26	663	36	914	192	4877

Vibration isolators

Optional sets of vibration isolators can be supplied loose with each unit.

Use the isolator tables shipped with the unit in the information pack. Identify each mount and its correct location on the unit.

Installation

Place each mount in its correct position and lower the unit carefully onto the mounts ensuring the mount engages in the mounting holes in the unit base frame.

On adjustable mounts, transfer the unit weight evenly to the springs by turning the mount adjusting nuts (located just below the top plate of the mount) counterclockwise to raise and clockwise to lower. This should be done two turns at a time until the top plates of all mounts are between 1/4 in. (6 mm) and 1/2 in. (12 mm) clear of top of their housing and the unit base is level.

Shipping braces

The chiller's modular design does not require shipping braces.

Chilled liquid piping

General requirements

The following piping recommendations are intended to ensure satisfactory operation of the units. Failure to follow these recommendations could cause damage to the unit, or loss of performance, and may invalidate the warranty.

The maximum flow rate and pressure drop for the evaporator must not be exceeded at any time. See SECTION 5 - TECHNICAL DATA on Page 63, for details.

The Maximum acceptable Chilled Liquid pressure in the inlet of Evaporator is same as the statement in "Maximum Tube Side Pressure" of Pressure Vessel Name Plate for YVAA and YVFA with Falling Film Evaporator.

The liquid must enter the evaporator at the inlet connection. The standard inlet connection for the evaporator is opposite the control panel end of the evaporator. A flow switch must be installed in the customer piping at the outlet of the evaporator and wired back to the control panel using shielded cable.

There should be a straight run of piping of at least 5 pipe diameters on either side. The flow switch should be wired to Terminals 2 and 13 on the 1TB terminal block. A flow switch is required to prevent damage to the evaporator caused by the unit operating without adequate liquid flow.

The flow switch used must have gold plated contacts for low voltage/current operation. Paddle type flow switches suitable for 10 bar (150 psig) working pressure and having a 1 in. N.P.T. connection can be obtained from Johnson Controls as an accessory for the unit. Alternatively, a differential pressure switch fitted across an orifice plate may be used, preferably of the high/low limit type.

Another alternative flow switch is a thermal dispersion flow switch.

The chilled liquid pumps installed in the piping systems should discharge directly into the unit evaporator section of the system. The pumps may be controlled by the chiller controls or external to the unit.

Pipework and fittings must be separately supported to prevent any loading on the evaporator. Flexible connections are recommended which will also minimize transmission of vibrations to the building. Flexible connections must be used if the unit is mounted on anti-vibration mounts, as some movement of the unit can be expected in normal operation.

Piping and fittings immediately next to the evaporator should be readily de-mountable to enable cleaning before operation, and to facilitate visual inspection of the exchanger nozzles.

The evaporator must be protected by a strainer, preferably of 16 mesh, fitted as close as possible to the liquid inlet connection, and provided with a means of local isolation.

The evaporator must not be exposed to flushing velocities or debris released during flushing. It is recommended that a suitably sized bypass and valve arrangement is installed to allow flushing of the piping system. The bypass can be used during maintenance to isolate the heat exchanger without disrupting flow to other units. When flushing the system, do not allow system water to flow through the chiller heat exchangers.

Thermometer and pressure gauge connections should be provided on the inlet and outlet connections of each evaporator. Gauges and thermometers are not provided with the unit and are to be furnished by others. SECTION 4 - INSTALLATION Form 201.28-NM1.1
Issue date: 08/06/2021

Drain and air vent connections should be provided at all low and high points in the piping to permit drainage of the system and to vent any air in the pipes. Liquid system lines at risk of freezing, due to low ambient temperatures must be protected using insulation and heater tape and/or a suitable glycol solution. The liquid pumps may also be used to ensure liquid is circulated when the ambient temperature approaches freezing point.

Insulation should also be installed around the evaporator nozzles. Heater tape of 21 watts per meter under the insulation is recommended, supplied independently and controlled by an ambient temperature thermostat set to switch ON at approximately 2.2°C (4°F), above the freezing temperature of the chilled liquid.

Evaporator heater mats are installed under the insulation, and are powered from the chiller's control panel. In sub-freezing conditions, unless the evaporator has been drained or an appropriate water-to-glycol concentration is maintained, high voltage power to the chiller must be kept on to ensure the heater mats assist in evaporator freeze protection. If there is a potential for power loss, Johnson Controls requires that the evaporator is drained or that water in the chilled water circuit be replaced with an appropriate water-to-glycol concentration.

Any debris left in the water piping between the strainer and evaporator could cause serious damage to the tubes in the evaporator and must be avoided. Be sure the piping is clean before connecting it to the evaporator. Keep evaporator nozzles and chilled liquid piping capped before installation to ensure construction debris is not allowed to enter.

All chiller piping connecting the customer system to the packaged chiller is the responsibility of others. It is not considered part of the chiller package.

The installer/user must also ensure that the quality of the water in circulation is adequate, without any dissolved gases, which can cause oxidation of steel or copper parts within the evaporator.

Evaporator pressure drop

The evaporator is designed in accordance with ARI-590-92 which allows for an increase in pressure drop of up to 15% above the design value shown in *the Pressure Drop tables shown in Figure 6 on page 39 and Figure 7 on page 39.* Debris in the water may also cause additional pressure drop.

Excessive flow above the maximum GPM will damage the evaporator.

See Table 8 on page 74 for standard 2-pass and Table 9 on page 78 for optional 3-pass to determine evaporator/frame size and to find the evaporator line to use.

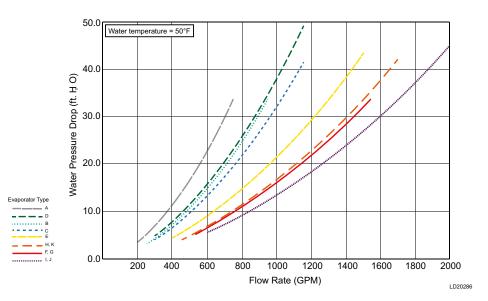


Figure 6 - Two pass water pressure drop, English units

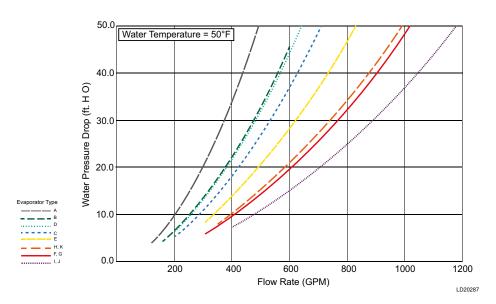


Figure 7 - Three pass water pressure drop, English units

See Table 7 on page 70 for optional single pass, Table 8 on page 74 for standard 2-pass and Table 9 on page 78 for optional 3-pass to determine evaporator/frame size and to find the evaporator line to use.

SECTION 4 - INSTALLATION Form 201.28-NM1.1
Issue date: 08/06/2021

Water treatment

The unit performance provided in the Design Guide is based on a fouling factor of 0.018 m2/hr °C/kW (0.0001 ft2hr°F/Btu). Dirt, scale, grease and certain types of water treatment will adversely affect the heat exchanger surfaces and therefore the unit performance. Foreign matter in the water systems can increase the heat exchanger pressure drop, reducing the flow rate and causing potential damage to the heat exchanger tubes.

Aerated, brackish or salt water is not recommended for use in the water systems. Johnson Controls recommends that a water treatment specialist should be consulted to determine whether the proposed water composition will adversely affect the evaporator materials of carbon steel and copper. The pH value of the water flowing through the evaporator must be kept in a range between 7 and 8.5.

Pipework arrangement

The following is a suggested piping arrangement for single unit installations.

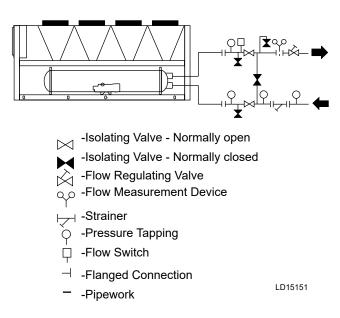


Figure 8 - Pipework arrangement

Minimum water volume

It is good practice to include as much water volume as possible in a chilled water loop. This increases the thermal mass and flywheel effect within the system (that is, the more; the better) which in turn promotes stable water temperature control and increases reliability by reducing compressor cycling.

For air conditioning applications, a minimum of 3 gallons/ton is required. with a preferred gallon/ton ratio to be within the 5 to 8 range. For process applications, a minimum of 6 gallons/ton ratio is required with preference towards a range of 7 to 11. Install a tank or increase pipe sizes to provide sufficient water volume.

Leaving water temperature out of range

The YVAA chiller line has a maximum leaving water temperature of 15.6°C (60°F). Where process applications require a chilled water temperature higher than what the chiller provides, a simple piping change can remove the problem. By using a mixture of chiller-cooled water and returning process water, the chilled water entering the process can be held at the desired temperature. A tank can also be used to meet high leaving water temperature requirements.

Each YVAA evaporator has a minimum and maximum flow rate. Some process applications require a flow rate that is out of range for the evaporator. In those applications, a piping change can remove the problem.

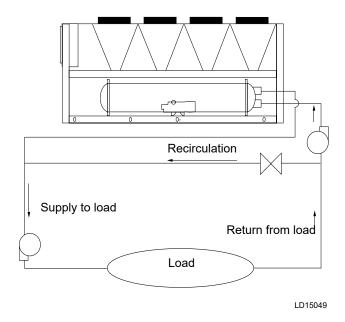


Figure 9 - Leaving water temperature out of range suggested layout

In applications where the required flow rate is less than the evaporator's minimum allowable, the chilled water can be recirculated to the chiller.

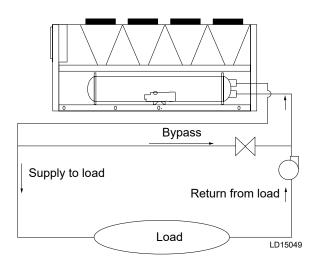


Figure 10 - Suggested layout for applications with a flow rate less than the evaporator minimum allowable flow rate

In applications where the required flow rate is greater than the evaporator's maximum allowable, the chilled water can be recirculated to the load.

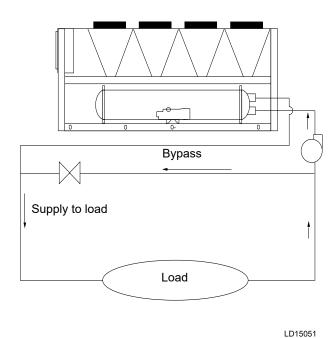


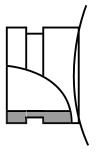
Figure 11 - Suggested Layout for Applications with a Flow Rate Greater Than the Evaporator Maximum Allowable Flow Rate

Thermal storage

Thermal storage is the practice of storing cooling energy during a period of little or no load and/or low energy costs for use during periods of high load and/ or energy costs. Conventional cooling systems produce cooling when it is needed which is commonly during times of peak demand. Thermal storage allows generation of cooling capacity to occur during off-peak periods and store that capacity to meet future cooling requirements. Using thermal storage can result in smaller equipment sizes, thereby reducing capital cost, and also can result in significant energy cost savings.

The YVAA has special control logic to be able to produce chilled leaving brine temperatures below 4.4°C (40°F) so as to supply a storage tank with chilled liquid during times of low demand. YVAA chillers selected for thermal storage operation can also be selected to efficiently provide chilled fluid at nominal cooling loads.

Variable primary flow


Johnson Controls recommends a maximum 10% per minute flow rate of change, based on design flow, for variable primary flow applications. Provide 8 to 10 gallons per chiller ton (8.6 to 10.8 liter per cooling KW) system water volume. Insufficient system volume and rapid flow changes can cause control problems or can even cause chiller shutdowns. There are many other design issues to evaluate with variable primary flow systems. Consult your Johnson Controls Sales Office for more information about successfully applying YVAA chillers.

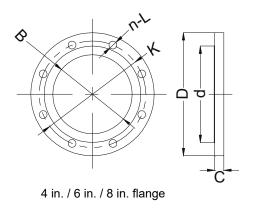
Connection types and sizes

For connection sizes relevant to individual models see *SECTION 5 - TECHNICAL DATA*.

Evaporator connections

Standard chilled liquid connections on evaporators are of the grooved type for ASME and PED marked units and Flange type for GB marked units (see *Figure 12 on page 41* for flange dimensions on GB marked vessels).

LD10494


Figure 12 - Grooved nozzle

Form 201.28-NM1.1 Issue date: 08/06/2021

Table 3 - Evaporator connections dimensions

				Nominal	FI	ange c	limens	ions (GE	only	mm *		
Frame	Cond	Evap	Grooved size, in.	diameter	В	С	D	к	L	D	N	Qty
015	3	В	6	DN150	170.5	27	280	241.5	22	216	8	2
016	5	В	6	DN150	170.5	27	280	241.5	22	216	8	2
017	8	С	6	DN150	170.5	27	280	241.5	22	216	8	2
018	3	Α	6	DN150	170.5	27	280	241.5	22	216	8	2
019	5	Α	6	DN150	170.5	27	280	241.5	22	216	8	2
019	8	В	6	DN150	170.5	27	280	241.5	22	216	8	2
020	0	С	6	DN150	170.5	27	280	241.5	22	216	8	2
021	3	Α	6	DN150	170.5	27	280	241.5	22	216	8	2
021	5	С	6	DN150	170.5	27	280	241.5	22	216	8	2
021	8	С	6	DN150	170.5	27	280	241.5	22	216	8	2
023	3	В	6	DN150	170.5	27	280	241.5	22	216	8	2
024	5	С	6	DN150	170.5	27	280	241.5	22	216	8	2
024	8	С	6	DN150	170.5	27	280	241.5	22	216	8	2
026	3	В	6	DN150	170.5	27	280	241.5	22	216	8	2
027	0	D	6	DN150	170.5	27	280	241.5	22	216	8	2
027	3	D	6	DN150	170.5	27	280	241.5	22	216	8	2
027	5	Е	8	DN200	221.5	27	345	298.5	22	270	8	2
027	8	Е	8	DN200	221.5	27	345	298.5	22	270	8	2
029	5	Е	8	DN200	221.5	27	345	298.5	22	270	8	2
030	3	С	6	DN150	170.5	27	280	241.5	22	216	8	2
030	5	С	6	DN150	170.5	27	280	241.5	22	216	8	2
030	8	Е	8	DN200	221.5	27	345	298.5	22	270	8	2
031	8	Е	8	DN200	221.5	27	345	298.5	22	270	8	2
032	3	Е	8	DN200	221.5	27	345	298.5	22	270	8	2
033	3	С	6	DN150	170.5	27	280	241.5	22	216	8	2
034	3	Е	8	DN200	221.5	27	345	298.5	22	270	8	2
034	5	Е	8	DN200	221.5	27	345	298.5	22	270	8	2
036	8	J	8	DN200	221.5	27	345	298.5	22	270	8	2
037	3	F	8	DN200	221.5	27	345	298.5	22	270	8	2
037	5	J	8	DN200	221.5	27	345	298.5	22	270	8	2
039	8	J	8	DN200	221.5	27	345	298.5	22	270	8	2
041	3	Н	8	DN200	221.5	27	345	298.5	22	270	8	2
042	5	Н	8	DN200	221.5	27	345	298.5	22	270	8	2
042	8	J	8	DN200	221.5	27	345	298.5	22	270	8	2
044	3	G	8	DN200	221.5	27	345	298.5	22	270	8	2
047	5	J	8	DN200	221.5	27	345	298.5	22	270	8	2
048	3	G	8	DN200	221.5	27	345	298.5	22	270	8	2
049	0	K	8	DN200	221.5	27	345	298.5	22	270	8	2
050	0	J	8	DN200	221.5	27	345	298.5	22	270	8	2
052	3	J	8	DN200	221.5	27	345	298.5	22	270	8	2

^{*} See Figure 11 on page 44 for flange dimensions.

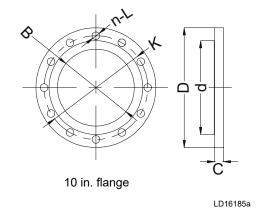


Figure 13 - Flange for GB vessels

Option flanges

One of two types of flanges may be fitted depending on the customer or local pressure vessel code requirements. These are grooved adapter flanges, normally supplied loose, or weld flanges, which may be supplied loose or ready-fitted. Grooved adapter and weld flange dimensions are to ISO 7005 - NP10.

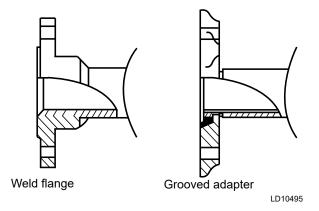


Figure 14 - Flange attachment

Refrigerant relief valve piping

The evaporator is protected against internal refrigerant overpressure by refrigerant relief valves. A pressure relief valve is mounted on each of the main refrigerant lines connecting the evaporator to the compressors.

A piece of pipe is fitted to each valve and directed so that when the valve is activated the release of high pressure gas and liquid cannot be a danger or cause injury. For indoor installations (not recommended), pressure relief valves should be piped to the exterior of the building. The size of any piping attached to a relief valve must be of sufficient diameter so as not to cause resistance to the operation of the valve. Unless otherwise specified by local regulations. Internal diameter depends on the length of pipe required and is given by the following formula:

$$D^5 = 1.447 \text{ x L}$$

Where:

- D = minimum pipe internal diameter in cm
- L = length of pipe in meters

If relief piping is common to more than one valve, its cross-sectional area must be at least the total required by each valve. Valve types should not be mixed on a common pipe. Precautions should be taken to ensure the outlets of relief valves or relief valve vent pipes remain clear of obstructions at all times.

Electrical connection

The following connection recommendations are intended to ensure safe and satisfactory operation of the unit. Failure to follow these recommendations could cause harm to persons or damage the unit, and may invalidate the warranty.

No additional controls (relays, and so on) should be mounted in the control panel. Power and control wiring not connected to the control panel should not be run through the control panel. If these precautions are not followed it could lead to a risk of electrocution. In addition, electrical noise could cause malfunctions or damage the unit and its controls.

SECTION 4 - INSTALLATION Form 201.28-NM1.1
Issue date: 08/06/2021

After power wiring connection, do not switch on mains power to the unit. Some internal components are live when the mains are switched on and this must only be done by authorized persons familiar with starting, operating, and trouble-shooting this type of equipment.

Power wiring

All electrical wiring should be carried out in accordance with local regulations. Route properly sized cables to cable entries on the unit.

In accordance with local codes, NEC codes, U.L. and C.E. standards, it is the responsibility of the user to install over current protection devices between the supply conductors and the power supply terminals on the unit.

To ensure that no eddy currents are set up in the power panel, the cables forming the 3-phase power supply must enter using the same cable entry.

All sources of supply to the unit must be taken using a common point of isolation (not supplied by Johnson Controls).

Copper power wiring only should be used for supplying power to the chiller. This is recommended to avoid safety and reliability issues resulting from connection failure at the power connections to the chiller. Aluminum wiring is not recommended due to thermal characteristics that may cause loose terminations resulting from the contraction and expansion of the wiring. Aluminum oxide may also build up at the termination causing hot spots and eventual failure. If aluminum wiring is used to supply power to the chiller, AL-CU compression fittings should be used to transition from aluminum to copper. This transition should be done in an external box separate to the power panel. Copper conductors can then be run from the box to the chiller.

Caulk power and control wiring conduit entering the power panel to ensure moist air from the building cannot enter the panel.

Power supply wiring

- Units require only one 3-phase supply, plus earth.
- Connect the 3-phase supplies to the circuit breaker located in the panel See *Table 4 on page 52*.
- Connect a suitably sized earth wire to the PE terminal in the panel.

115 VAC control supply transformer

A 3-wire high voltage to 115 VAC supply transformer is standard in the chiller. This transformer is mounted in the cabinet and steps down the high voltage supply to 115 VAC to be used by the controls, VSD, Feed and Drain Valve Controller, valves, solenoids, heaters, and so on.

The high voltage for the transformer primary is taken from the chiller input. Fusing is provided for the transformer.

Removing high voltage power to the chiller will remove the 115 VAC supply voltage to the control panel circuitry and the evaporator heater mat. In subfreezing weather, this could cause serious damage to the chiller due to evaporator freeze-up. Do not remove power unless alternate means are taken to ensure operation of the control panel, evaporator heater mat, and waterbox heaters.

Control wiring

All control wiring utilizing contact closures to the control panel terminal block is nominal 115 VAC and must be run in shielded cable, with the shield grounded at the panel end only, and run in water tight conduit. Run shielded cable separately from mains cable to avoid electrical noise pick-up. Use the control panel cable entry to avoid the power cables.

Voltage free contacts connected to the panel must be suitable for 115 VAC 10 mA (gold contacts recommended). If the voltage free contacts form part of a relay or contactor, the coil of the device must be suppressed using a standard R/C suppressor. The above precautions must be taken to avoid electrical noise, which could cause a malfunction or damage to the unit and its controls.

Volts free contacts

Chilled liquid pump starter

Terminals 23 and 24 on 1TB close to start the chilled liquid pump. This contact can be used as a master start/ stop for the pump in conjunction with the daily start/ stop schedule. Cycle the pumps from the unit panel if the unit will be operational or shut-down during subfreezing conditions. See *Evaporator Pump Control on Page 104*, for more information on testing the pumps.

Run contact

Terminals 21 and 22 on 1TB close to indicate that a system is running.

Alarm contacts

Each system has a single voltage-free contact, which will operate to signal an alarm condition whenever any system locks out, or there is a power failure. To obtain system alarm signal, connect the alarm circuit to volt free Terminals 25 & 26 (Sys 1), Terminals 27 and 28 (Sys 2) of 1TB.

System inputs

Flow switch

A chilled liquid flow switch of suitable type MUST be connected between Terminals 2 and 13 of 1TB to provide protection against loss of liquid flow, which will cause evaporator freeze-up if the chiller is permitted to run. The flow switch circuitry is a 115 VAC circuit. Contacts must be rated for low current (5 mA). Gold contacts should be used.

Generally, the thermal dispersion flow switch is shipped with the unit as a loose part.

To mount the IFM thermal dispersion switch, use the following guidelines:

- Use a pipe coupling to mount the thermal dispersion flow switch. See *Figure 18 on page 49*. The length of the pipe coupling must be suitable to ensure that the insertion depth of the sensor is at least 12 mm.
- Mount the thermal dispersion flow switch in horizontal pipes from the side. If it has to be mounted in vertical pipes, mount the switch in the rising pipes.
- Mount the thermal dispersion flow switch on the top of the horizontal pipes only if the pipe is fully filled with liquid. Mount the thermal dispersion flow switch on the bottom of the horizontal pipes only if the pipe is free from buildup.

- Ensure that the sensor tip does not contact the pipe wall. Do not mount it in a downpipe, in which the liquid flows downwards.
- Avoid turbulence of the liquid resulting from bends, valves, reducers, and other pipe fittings. Ensure that the distance from the potential turbulence upstream or downstream of the sensor location is at least 5 times of the pipe diameter.
- Connect the control monitor with the flow sensor directly. No extension cable between them is allowed.

Remote run/stop

A Remote Run/Stop input is available for each system. These inputs require a dry contact to start and stop the system. System 1 remote dry contacts are connected between Terminals 2 and 15 of 1TB and System 2 dry contacts are connected between Terminals 2 and 16 of 1TB. If remote start/stop is not utilized, a jumper must be paced across the terminals to allow the system to run. The remote run/stop circuitry is a 115 VAC circuit. Contacts must be rated for low current (5 mA). Gold contacts should be used.

Remote print

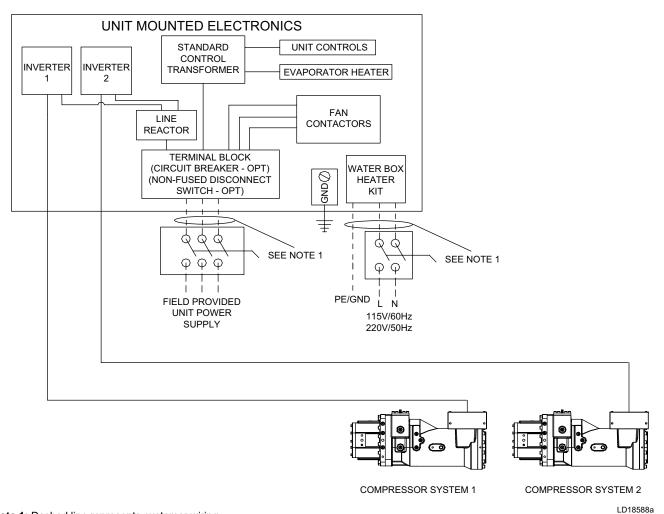
Closure of suitable contacts connected to Terminals 2 and 14 of 1TB will cause a hard copy printout of Operating Data/Fault History to be made if an optional printer is connected to the RS-232 port. The remote print circuitry is a 115 VAC circuit. Contacts must be rated for low current (5 mA). Gold contacts should be used.

Optional remote setpoint offset - temperature

A voltage signal connected to Terminals 17 and 18 of 1TB will provide a remote offset function of the chilled liquid setpoint, if required.

Optional remote setpoint offset - current

A voltage signal connected to Terminals 19 and 20 of 1TB will provide a remote setting of current limit setpoint, if required.


Optional remote setpoint offset – sound limiting

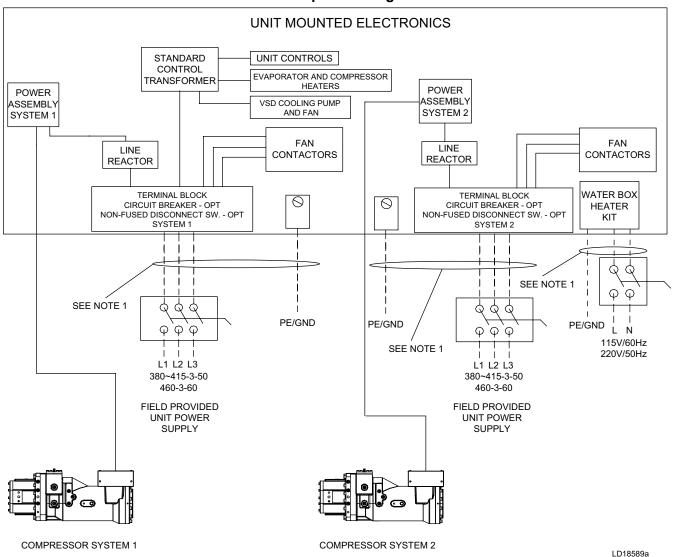
A voltage signal connected to Terminals 40 and 41 of 1TB will provide remote setting of sound limit setpoint, if required.

SECTION 4 - INSTALLATION Form 201.28-NM1.1 Issue date: 08/06/2021

Power supply wiring

Single point wiring

Note 1: Dashed line represents customer wiring.


Minimum Circuit Ampacity (MCA), Minimum/Maximum Fuse Size, and Minimum/Maximum Circuit Breaker size vary on chillers based upon model and options ordered. Consult YorkWorks or the chiller data plate for electrical data on a specific chiller.

Voltage utilization range

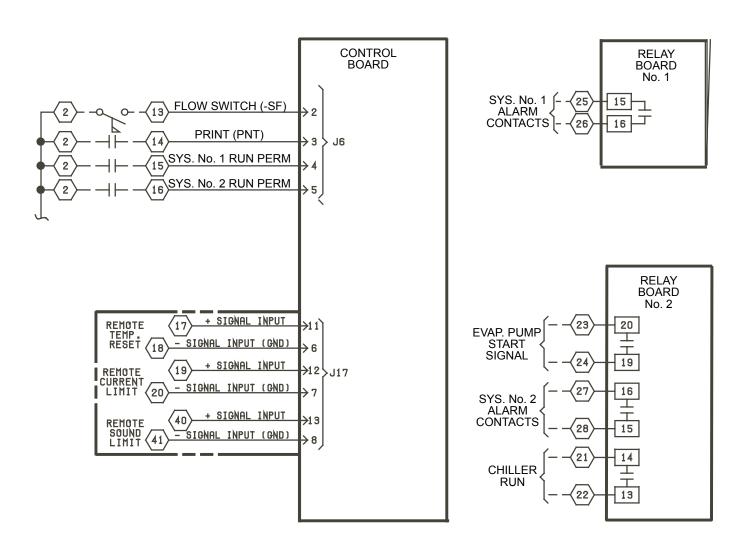
Rated voltage	Utilization range
200/60/3	180–220
230/60/3	208–254
380/60/3	342–418
400/60/3	360–440
460/60/3	414–508
575/60/3	520–635
400/50/3	360–440

Figure 15 - Single point power wiring

Dual point wiring

Note 1: Dashed line represents customer wiring.

Minimum Circuit Ampacity (MCA), Minimum/Maximum Fuse Size, and Minimum/Maximum Circuit Breaker size vary on chillers based upon model and options ordered. Consult YorkWorks or the chiller data plate for electrical data on a specific chiller.

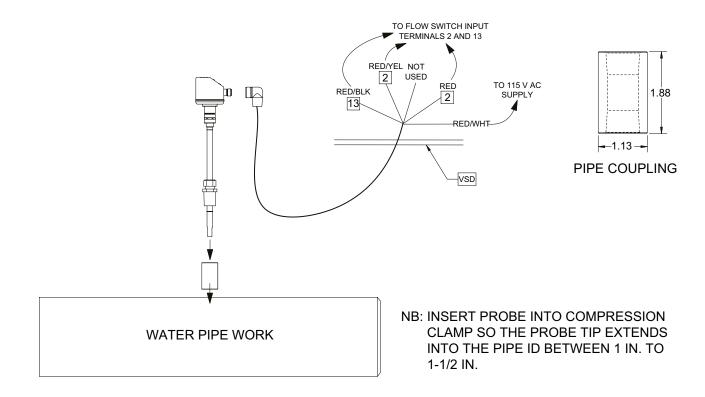

Voltage utilization range

Rated voltage	Utilization range
200/60/3	180–220
230/60/3	208–254
380/60/3	342–418
400/60/3	360–440
460/60/3	414–508
575/60/3	520–635
400/50/3	360–440

Figure 16 - Dual point power wiring

SECTION 4 - INSTALLATION Form 201.28-NM1.1 Issue date: 08/06/2021

Customer control wiring



In subfreezing regions, failure to connect EVAP. PUMP START SIGNAL from terminal 23 and terminal 24 to chilled water pump starter will void warranty, except when the water in the evaporator is fully dried or appropriate concentration of glycol is reached in the water system.

Figure 17 - Customer control connections

Thermal dispersion flow switch connections

LD29076

Flow switch connections

Connection in VSD panel
ITB - 13
ITB - 2
ITB - 2
Terminal No. 11 in relay board No. 1
(115 VAC)
Not used

Figure 18 - Thermal dispersion flow switch connections

SECTION 4 - INSTALLATION Form 201.28-NM1.1 Issue date: 08/06/2021

Figure 19 - Reserved customer wiring entry

For YVAA chillers, if the water box heater option is available, the customer has to connect a 115 V/60 Hz or 220 V/50 Hz, single-phase power supply to the wiring box of the water box heater. The wiring box protects the water box of the evaporator from freezing under low ambient. The customer needs to break the reserved customer wiring entry, as shown in *Figure 19*, with the wiring going through an appropriate 90 degrees conduit. After connecting the wires, water proofing measures need to be taken to meet IP65.

115VAC-1PH-60HZ

Failure to connect the power connection to the water box heater wiring box, or to meet IP65, will void warranty.

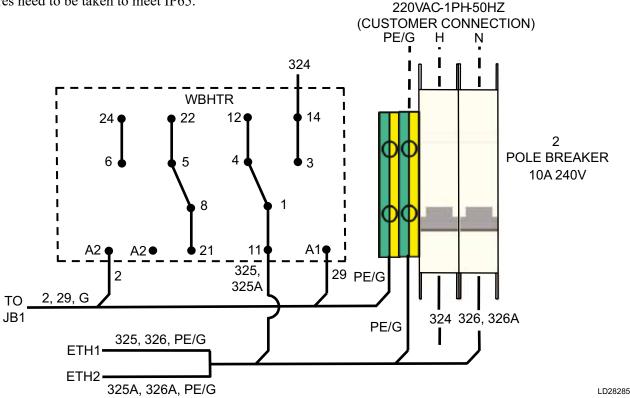


Figure 20 - Water box heater wiring box

Connect the 115 V/60 Hz or 220 V/50 Hz power supply to the top terminals of the 2-pole-breaker, as shown in *Figure 20*. Connect the hot line to terminal H and the neutral line to terminal N. After connecting the terminals, turn on the breaker only when the evaporator is filled with water in waterside. The recommended power supply wiring size is 18-4-AWG.

Before turning on the breaker, make sure the evaporator is filled with water. Misoperation will void warranty and a water box heater fail, which will lead to the freezing of the evaporator.

Evaporator heaters used in the unit may malfunction without alarm. Once the heater failure is found under subfreezing condition, stop using the chiller and drain off water from the evaporator completely to protect the evaporator from freezing.

Form 201.28-NM1.1 Issue date: 08/06/2021

Table 4 - Electrical lug data

					1	Standa	rd and ulti	ra quiet condens	er fans	
	Field	l wiring	lugs		Teri	minal block		uit breaker	Non-fuse	ed disconnect switch
YVA Frame	Cond	EL Evap	Input volts	Input freq	Wires per phase	Lug wire range	Wires per phase	Lug wire range	Wires per phase	Lug wire range
						Single point wiri	ing	•		
			200	60	4	#2 - 600 kcmil				
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil		
015	3	В	380	60	2	#2 - 600 kcmil	2	#2/0 ~ 500 kcmil	2	#2 - 600 kcmil
• • • •	•	_	400	50	2	#2 - 600 kcmil	2	#2/0 ~ 500 kcmil	2	#2 - 600 kcmil
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 - 600 kcmil
			575 200	60 60	2	#2 - 600 kcmil #2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil		
			380	60	2	#2 - 600 kcmil	2	#2/0 ~ 500 kcmil	2	#2 - 600 kcmil
016	5	В	400	50	2	#2 - 600 kcmil	2	#2/0 ~ 500 kcmil	2	#2 - 600 kcmil
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 - 600 kcmil
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil
			200	60	4	#2 - 600 kcmil				
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil		
017	8	С	380	60	2	#2 - 600 kcmil	2	#2/0 ~ 500 kcmil	2	#2 - 600 kcmil
017	l °	C	400	50	2	#2 - 600 kcmil	2	#2/0 ~ 500 kcmil	2	#2 - 600 kcmil
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 - 600 kcmil
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil
			200	60	4	#2 - 600 kcmil				
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil		
018	3	Α	380	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil
			400	50	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil
			460	60	2	#2 - 600 kcmil	2 2	#1 ~ 500 kcmil	2	#2 - 600 kcmil
			575	60	2	#2 - 600 kcmil		#1 ~ 500 kcmil	2	#2 ~ 600 kcmil
			200 230	60 60	4	#2 - 600 kcmil #2 - 600 kcmil	4	4/0 ~ 500 kcmil		
			380	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil
019	5	Α	400	50	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 - 600 kcmil
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil
			200	60	4	#2 - 600 kcmil	_		_	
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil		
040	١ ,	_	380	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil
019	8	В	400	50	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 - 600 kcmil
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil
			200	60	4	#2 - 600 kcmil				
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil		
020	0	С	380	60	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			400	50	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3 2	#2 - 600 kcmil
			575 200	60 60	2	#2 - 600 kcmil #2 - 600 kcmil	2	#1 ~ 500 kcmil		#2 ~ 600 kcmil
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil		
			380	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil
021	3	Α	400	50	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 - 600 kcmil
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil
			200	60	4	#2 - 600 kcmil				
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil		
021	_	С	380	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil
UZ I	5		400	50	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 - 600 kcmil
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil

Table 4 - Electrical lug data (cont'd)

					High airflow/high static condenser fans										
	Field	d wiring	lugs		Ter	minal block		uit breaker	Non-fus	ed disconnect switch					
	/AA mod		Input	Input	Wires per	Lug wire range	Wires per	Lug wire range	Wires per	Lug wire range					
Frame	Cond	Evap	volts	freq	phase	Lug who rungo	phase	Lug Wile Turige	phase	Lag wile range					
	_					Single point wir	ing								
			200	60	4	#1/0 ~ 700 kcmil									
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil		//O OOO I ''					
015	3	В	380	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil					
			400 460	50 60	2	#2 - 600 kcmil #2 - 600 kcmil	2	#1 ~ 500 kcmil #1 ~ 500 kcmil	3	#2 ~ 600 kcmil					
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil #2 ~ 600 kcmil					
			200	60	4	#1/0 ~ 700 kcmil		#1 ~ 300 KCIIIII		#2 ~ 000 KGIIII					
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil							
	_	_	380	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil					
016	5	В	400	50	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil					
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil					
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil					
			200	60	4	#1/0 ~ 700 kcmil									
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil							
017	8	С	380	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil					
•			400	50	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil					
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil					
			575	60 60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil					
			200 230	60	4	#1/0 ~ 700 kcmil #2 - 600 kcmil	4	4/0 ~ 500 kcmil							
			380	60	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil					
018	3	Α	400	50	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil					
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil					
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil					
			200	60	4	#1/0 ~ 700 kcmil									
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil							
019	5	Α	380	60	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil					
013		^	400	50	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil					
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil					
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil					
			200	60	4	#1/0 ~ 700 kcmil		4/0 500 1							
			230 380	60 60	3	#2 - 600 kcmil	3	4/0 ~ 500 kcmil 3/0 ~ 400 kcmil	2	#2 - 600 komil					
019	8	В	400	50	3	#2 - 600 kcmil #2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil #2 ~ 600 kcmil					
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil					
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil					
			200	60	4	#1/0 ~ 700 kcmil		220							
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil							
020	0	С	380	60	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil					
020	"		400	50	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil					
			460	60	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil					
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil					
			200	60	4	#1/0 ~ 700 kcmil		4/0 500 ! "							
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil	2	#0 - 600 !					
021	3	Α	380 400	60 50	3	#2 - 600 kcmil #2 - 600 kcmil	3	3/0 ~ 400 kcmil 3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil #2 ~ 600 kcmil					
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil					
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil					
			200	60	4	#1/0 ~ 700 kcmil	-	,, 1 000 KOM		<u></u> 230 KGM					
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil							
004	_	_	380	60	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil					
021	5	С	400	50	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil					
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil					
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil					

Form 201.28-NM1.1 Issue date: 08/06/2021

SECTION 4 - INSTALLATION

Table 4 - Electrical lug data (cont'd)

					STANDARD & ULTRA QUIET CONDENSER FANS								
	Field	l wiring l	ugs		Teri	minal block	Circ	cuit breaker		ed disconnect switch			
Y\ Frame	VAA mod Cond	el Evap	Input volts	Input freq	Wires per phase	Lug wire range	Wires per phase	Lug wire range	Wires per phase	Lug wire range			
				l	S	ingle point wirin	g						
			200	60	4	#2 - 600 kcmil							
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil					
021	8	С	380	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil			
V			400	50	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil			
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 - 600 kcmil			
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil			
			200	60 60	4	#2 - 600 kcmil #2 - 600 kcmil	4	1/0 500 kemil					
			230 380				4	4/0 ~ 500 kcmil 3/0 ~ 400 kcmil	2	#2 - 600 kamil			
023	3	В	400	60 50	3	#2 - 600 kcmil	3	$3/0 \sim 400 \text{ kcmil}$ $3/0 \sim 400 \text{ kcmil}$	3	#2 ~ 600 kcmil #2 ~ 600 kcmil			
			460	60	2	#2 - 600 kcmil #2 - 600 kcmil	2	#1 ~ 500 kcmil	3				
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil #2 ~ 600 kcmil			
			200	60	4	#2 - 600 kcmil		#1 - JUU KUIIII		π∠ ·· OOO KUIIII			
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil		 			
			380	60	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
024	5	С	400	50	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil			
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil			
			200	60	4	#2 - 600 kcmil		n i coc kemii		WE GOO KOM			
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil					
	_		380	60	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
024	8	С	400	50	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil			
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil			
			200	60	4	#2 - 600 kcmil							
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil					
026	3	В	380	60	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
020	3		400	50	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil			
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil			
			200	60	4	#2 - 600 kcmil							
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil		//a aaa / //			
027	0	D	380	60	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
			400	50	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
			460 575	60 60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil			
						#2 - 600 kcmil		#1 ~ 500 kcmil		#2 ~ 600 kcmil			
			200 230	60 60	4	#2 - 600 kcmil #2 - 600 kcmil	4	4/0 ~ 500 kcmil					
			380	60	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
027	3	D	400	50	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil			
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil			
			200	60	4	#2 - 600 kcmil		330 ROTTIII		330 Komili			
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil		1			
00-	_	_	380	60	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
027	5	E	400	50	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil			
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil			
			200	60	4	#2 - 600 kcmil							
			230	60	4	#2 - 600 kcmil	4	4/0 ~ 500 kcmil					
027	8	E	380	60	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
027	٥		400	50	3	#2 - 600 kcmil	3	3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil			
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#2 ~ 600 kcmil			
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#2 ~ 600 kcmil			

Table 4 - Electrical lug data (cont'd)

Terminal block Circuit breaker Non-flused dissillate	High airflow/high static condenser fans																							
Prame Cond Evap Toput Input volts free phase Lug wire range Wires per phase Lug wires range Wires per phase Lug wires range Wires per phase Lug wires range Wires	sed discor							Non-fus									Ter			ıgs	ng I	d wiring	Field	
Prame Cond Evap Volts Input									1.	コ							Vires	T	l. ,		Т	del	AA mod	ΥV
1021 8	Lug wire	₋ug wi	Lug	Lug	Lug	r _L	er	Vires per phase	, V	ge	range	g wire rar	Lug	per e	Wires pe phase	Lug wire range	per		-	•	,	Evap	Cond	rame
021 8 C 230 60 4 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 3 #2 - 400 kcmil 2 #1 - 500 kcmil 3 #2 - 400 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 400 kcmil 2 #1 - 500 kcmil 2 #2 - 400 kcmil 2 #1 - 500 kcmil 2 #2 - 400 kcmil 2 #1 - 500 kcmil 2 #2 - 400 kcmil 3															ing	Single point wirir								
021 8						┸			L									L			L			
021 8					L	1			╄									L			L			
1023 3	#2 ~ 600								╀									┞			L	С	8	021
1023 3	#2 ~ 600								+					\dashv				┡			F			
1023 3	#2 ~ 600						-		╀					\dashv				Ͱ			H			
1023 3	#2 ~ 600	#2 ~ 60	#2 ^	#2	#2	#			╁	nII	KCMII	~ 500 KC	#1	_				┞			+			
023 3 B					-	╁	-		╁		0 komi) - F00 ko	4/0		1			╀			H			
024 5	#2 ~ 600	#2 ~ 60	#2 .	#2	#2	+	-	2	╁					-				⊦			H			
1024 S	#2 ~ 600								+					-1				╁			H	В	3	023
1	#2 ~ 600								╁					\dashv				╁			H			
1	#2 ~ 600						_		t									┢			H			
024 5 C 380 60 4 #2 - 600 kcmil 4 4/0 - 500 kcmil 3 #2 - 600 kcmil 3 3/0 - 400 kcmil 3 #2 - 600 kcmil 3 3/0 - 400 kcmil 3 #2 - 600 kcmil 3 3/0 - 400 kcmil 3 #2 - 600 kcmil 3 3/0 - 400 kcmil 3 #2 - 600 kcmil 3 3/0 - 400 kcmil 3 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 3 3/0 - 400 kcmil 3	,,,2 000	0	., _	"-	1,,,2	111	\dashv		t			. 500 101	<i>,,</i> 1	一				T			\top			
024 5 C 380 60 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 2 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 2 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 3 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 3 4/0 + 600 kcmil 4 4/0 ~ 500 kcmil 3 4/0 + 600 kcmil 4 4/0 ~ 500 kcmil 3 4/0 + 600 kcmil 4 4/0 ~ 500 kcmil 3 4/0 + 600 kcmil 4 4/0 ~ 500 kcmil 3 4/0 + 600 kcmil 4 4/0 ~ 500 kcmil 3 4/0 + 600 kcmil 4 4/0 ~ 500 kcmil 5 4/0 & 500 k					t	\dagger	\dashv		\dagger	nil	0 kcmi	0 ~ 500 kc	4/0		4			T			上			
1024 S	#2 ~ 600	#2 ~ 60	#2 -	#2	#2	#		3	T									T			r	_	_	
024 8 C	#2 ~ 600								T									T			T	С	5	024
1024 8 C 200 60 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #2 - 600 kcmil 4 4/0 - 500 kcmil 3 3/0 - 400 kcmil 3 #2 - 600 kcmil 3 3/0 - 400 kcmil 3 #2 - 600 kcmil 3 3/0 - 400 kcmil 3 #2 - 600 kcmil 3 3/0 - 400 kcmil 3 #2 - 600 kcmil 3 3/0 - 400 kcmil 3 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #3 - 600 kcmil 3 40 - 500 kcmil 3 #3 - 600 kcmil 3 40 - 500 kcmil 3 #3 - 600 kcmil 3 40 - 500 kcmil 3 #3 - 600 kcmil 3 40 - 500 kcmil 3 #3 - 600 kcmil 3 40 - 500 kcmil 3 #3 - 600 kcmil 3 40 - 600 kcmil 3 40 - 500 kcmil 4 4/0 - 500	#2 ~ 600	#2 ~ 60	#2 -	#2	#2	#			T	mil	0 kcmi	0 ~ 400 kc	3/0			#2 - 600 kcmil		T			Г			
	#2 ~ 600	#2 ~ 60	#2 -	#2	#2	#		2	Ī	nil	kcmil	1 - 500 kcr	#1	Ī	2	#2 - 600 kcmil		Γ		575	Ī			İ
024 8 C 380 60 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 2 #1 - 500 kcmil 3 #2 - 600 kcmil 2 #1 - 500 kcmil 3 #2 - 600 kcmil 2 #1 - 500 kcmil 3 #2 - 600 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3									Г							#1/0 ~ 700 kcmil	4				T			
1024 8																								
026 3	#2 ~ 600								L									L			L	C	8	024
1026 3	#2 ~ 600																	L			L		•	024
No.	#2 ~ 600								L									L			L			
No.	#2 ~ 600	#2 ~ 60	#2 -	#2	#2	#		2	Ļ	ıil	kcmil	1 - 500 kcr	#1		2			Ļ						
No.						1			╄									L			L			
1026 3						1.												┞			L			
1	#2 ~ 600						_		╀									┞			F	В	3	026
1027 0 0 0 0 0 0 0 0 0	#2 ~ 600								╁					\dashv				╀			H			
Description	#2 ~ 600 #2 ~ 600						-		╀					\dashv				⊦			H			
D	#2 ~ 600	#2 ~ 0	#2 ^	#2	#2	++	\dashv		╁		KCIIII	1 - 500 KCI	#1	\dashv				╀			+			
027 0 D 380 60 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 460 50 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 575 60 2 #2 - 600 kcmil 2 #1 ~ 500 kcmil 2 #2 - 600 kcmil 200 60 4 #1/0 ~ 700 kcmil 4 4/0 ~ 500 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 4 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 3 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 3 #2 - 600 kcmil	_				┢	╁	-		╁	mil	n komi) ~ 500 kc	4/0		1			╁			H			
027 0	#2 ~ 600	#2 ~ 60	#2 -	#2	#2	+	-	3	╁									┢			┢			
Mathematical Property of the content of the conte	#2 ~ 600						1		╁									┢			H	D	0	027
Description Section	#2 ~ 600				_	_			_	_								t			H			
Description	#2 ~ 600				_	_	\dashv		t	_				\dashv				H			上			
D 230 60 4 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 2 #1 ~ 500 kcmil 2 #2 ~ 600 kcmil 2 #2 ~ 600 kcmil 2 #1 ~ 500 kcmil 2 #2 ~ 600 kcmil 4 4/0 ~ 500 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 2 #1 ~ 500 kcmil 2 #2 ~ 600 kcmil 2 #1 ~ 500 kcmil 2 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 #	1 300	•			† <u>"-</u>	Τ"	寸		t			230.10		寸	- -	· 		T			十			
027 3 D 380 60 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 2 #1 ~ 500 kcmil 2 #2 - 600 kcmil 2 #2 - 600 kcmil 2 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 4 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3					İ	1	\dashv		t	nil	0 kcmi	0 ~ 500 kc	4/0	<u> </u>	4			Τ			r			
027 3 b 400 50 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 #2 - 600 kcmil 2 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 #2 - 600 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 #2 - 600 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 #2 - 600 kcmil 3 #2 - 600 kcmil	#2 ~ 600	#2 ~ 60	#2 -	#2	#2	#	\dashv	3	T	_				<u> </u>				Γ			T	_	_	
460 60 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 2 #1 ~ 500 kcmil 2 #2 - 600 kcmil 2 #1 ~ 500 kcmil 2 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 #2 - 600 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil	#2 ~ 600				_	_			_						3			Γ			Γ	ען	3	027
027 E 200 60 4 #1/0 ~ 700 kcmil 230 60 4 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil	#2 ~ 600	#2 ~ 60	#2 -	#2	#2	#		3	T	nil	0 kcmi	0 ~ 400 kc	3/0		3	#2 - 600 kcmil		Γ	60	460	Г			
027 E	#2 ~ 600	#2 ~ 60	#2 ~	#2	#2	#		2		nil) kcmil	l ~ 500 kci	#1		2				60	575				
027 5 E 380 60 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3									Γ									匚			T			
027 8 E 400 50 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 2 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 2 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 3 3/0 ~ 400 k						L			_	_				ļ				L			L			
400 50 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 2 #1 - 500 kcmil 2 #2 ~ 600 kcmil 2 #1 - 500 kcmil 2 #2 ~ 600 kcmil 4 4/0 ~ 500 kcmil 3 880 60 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 8/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 8/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 8/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 8/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 8/0 ~ 400 kcmil 3 8/0 kcmil 3 8/0 kcm	#2 ~ 600			_	_	_	\Box		-	_				ļ				L			L	F	5	027
027 8 E 575 60 2 #2 - 600 kcmil 2 #1 - 500 kcmil 2 #2 - 600 kcmil 200 60 4 #1/0 ~ 700 kcmil 4 4/0 ~ 500 kcmil 230 60 4 #2 - 600 kcmil 4 4/0 ~ 500 kcmil 380 60 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil 400 50 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil	#2 ~ 600						4		-	-								\vdash			L	_	•	
027 8 E 200 60 4 #1/0 ~ 700 kcmil 4 4/0 ~ 500 kcmil 3 380 60 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3 #2 ~ 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 ~ 600 kcmil 3	#2 ~ 600						4		1					_				\vdash			L			
027 8 E 230	#2 ~ 600	#2 ~ 60	#2 ~	#2	#2	#	4	2	╀	าป	kcmil	1 - 500 kcr	#1		2	+ +		L			4			
027 8 E 380 60 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 400 kcmil 400 50 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 - 600 kcmil					ļ	\bot	_		1		0.1	500:	110	_	.			\vdash			L			
400 50 3 #2 - 600 kcmil 3 3/0 ~ 400 kcmil 3 #2 -	#0 00	#O C	110	۵۱۱۵	.110	1.	4		-	_								\vdash			\vdash			
400 50 3 #2 - 600 kcmii 3 3/0 ~ 400 kcmii 3 #2 -	#2 ~ 600						\dashv		-	-								\vdash			F	E	8	027
1 1 1 1 400 1 00 1 0 1 40 000 1 11 0 10/0 400 1 11 0 1/0	#2 ~ 600						4		╀									╀			F			
	#2 ~ 600 #2 ~ 600						4		╀					_				\vdash			F			

Form 201.28-NM1.1 Issue date: 08/06/2021

Table 4 - Electrical lug data (cont'd)

						Stand	lard and ul	tra quiet conden	ser fans	
	Field	wiring I	ugs		Tern	ninal block		uit breaker		sed disconnect switch
ΥV	AA mod	el	1	l	Wires		\A/'		Wires	
Frame	Cond	Evap	Input volts	Input freq	per phase	Lug wire range	Wires per phase	Lug wire range	per phase	Lug wire range
				,		Single point wir	ring			•
			200	60						
			230	60						
029	5	E	380	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
023		_	400	50	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	3	#2 ~ 600 kcmil
			460	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			200	60						
			230	60		//O OOO I 'I	4	// // 500 L :	4+	//O OOO I ''
030	3	С	380	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
			400	50	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	3	#2 ~ 600 kcmil
			460 575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil #3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
				60	<u> </u>	#2 - 600 kcmil	3	#3/U ~ 4UU KCMII	3	#2 ~ 600 kcmil
			200	60			1			-
			230 380	60 60	3	#2 - 600 kcmil	1	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
030	5	С	400	50	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 ~ 600 kcmil
			460	60		#2 - 600 kcmil	4	#3/0 ~ 500 kcmil	3	
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
				60	<u> </u>	#2 - 600 KCIIII	3	#3/0 ~ 400 KCMIII	ა	#2 ~ 600 kcmil
			200 230	60			-			
			380	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
030	8	E	400	50	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	3	#2 ~ 600 kcmil
			460	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			200	60		#2 - 000 KGIIII	3	#3/0 ~ 400 KCIIII		#2 * 000 KGHIII
			230	60						
			380	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
031	8	E	400	50	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	3	#2 ~ 600 kcmil
			460	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			200	60		#2 - 000 KGIIII	 	#5/0 +00 KCIIII		#2 000 KGITIII
			230	60						
			380	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
032	3	E	400	50	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	3	#2 ~ 600 kcmil
			460	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			200	60		#2 - 000 KOITIII	 	#6/6 400 KGIIII		#Z 000 KOITIII
			230	60			1			
	_		380	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
033	3	С	400	50	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	3	#2 ~ 600 kcmil
			460	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			200	60		S COC ROTTIN	† Ť			CCC ROTTI
			230	60						
	_	_	380	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
034	3	E	400	50	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	3	#2 ~ 600 kcmil
			460	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			200	60			† Ť		<u> </u>	
			230	60		İ				
	_	_	380	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
034	5	E	400	50	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	3	#2 ~ 600 kcmil
			460	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 ~ 600 kcmil

Table 4 - Electrical lug data (cont'd)

Field wiring lugs						High a	airflow/hig	h static condens	er fans	
	Field	d wiring	lugs		Ter	minal block		uit breaker	Non-fus	ed disconnect switch
YV Frame	/AA mod	del Evap	Input volts	Input freq	Wires per phase	Lug wire range	Wires per phase	Lug wire range	Wires per phase	Lug wire range
						Sinlg point wir	ing			
			200	60						
			230	60						
029	5	E	380	60	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
"-"		_	400	50	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			460	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 - 600 kcmil
			200	60						
			230	60						
030	3	С	380	60	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
***			400	50	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			460	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 - 600 kcmil
			200	60			ļ			
			230	60						
030	5	С	380	60	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
		_	400	50	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			460	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 - 600 kcmil
			200	60						
			230	60	4	//O OOO ! '!	4		4+	//O 000 I :I
030	8	E	380	60	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
			400	50	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			460	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 - 600 kcmil
			200	60					ļ	
			230	60	4	#0 000	4	#4/0 500	4*	#0 000 lil
031	8	E	380	60	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
			400	50	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			460	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#2 - 600 kcmil
			200	60						
			230 380	60 60	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
032	3	E					4			
			400	50	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			460 575	60 60	3	#2 - 600 kcmil #2 - 600 kcmil	3	#4/0 ~ 500 kcmil #3/0 ~ 400 kcmil	3	#2 - 600 kcmil #2 - 600 kcmil
			200	60	<u> </u>	#2 - 000 KCIIII	, <u> </u>	#3/0 ~ 400 KCMIII	3	#Z - OOU KUIIII
			230	60		 	-			
			380	60	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
033	3	С	400	50	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			460	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil		#2 - 600 kcmil
			200	60		#£ - OOO KUIIII		THOSE TOO KILLING	 	TE - OUU KUITIII
			230	60		1			 	
			380	60	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
034	3	E	400	50	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			460	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil		#2 - 600 kcmil
			200	60		,,_ 000 KOIIII	<u> </u>		 	,,_ 000 Koniii
			230	60		 			 	
		_	380	60	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil	4*	#2 - 600 kcmil
034	5	E	400	50	4	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			460	60	3	#2 - 600 kcmil	4	#4/0 ~ 500 kcmil		#2 - 600 kcmil
			575	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil		#2 - 600 kcmil

Form 201.28-NM1.1 Issue date: 08/06/2021

Table 4 - Electrical lug data (cont'd)

					Standard and ultra quiet condenser fans									
	Field	l wiring l	ugs		Ter	minal block		cuit breaker		sed disconnect switch				
	VAA mod		Input	Input	Wires per	Lug wire range	Wires per	Lug wire range	Wires per	Lug wire range				
Frame	Cond	Evap	volts	freq.	phase	Lug wife range	phase	Lug wire range	phase	Lug wife failige				
					[Dual point wiring								
			200	60										
			230	60										
036	8	J	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil				
			400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil				
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			200	60										
			230 380	60 60	3	#2 600 kamil	2	#2/0 - 400 komil	2	#3/0 ~ 400 kcmil				
037	3	F	400	50	3	#2 - 600 kcmil #2 - 600 kcmil	3	#3/0 ~ 400 kcmil #3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil				
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			200	60		"Z OOO KOITIII		" 1 OOO KOITIII		" i ooo komiii				
			230	60				1						
			380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil				
037	5	ı	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil				
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			200	60										
			230	60										
000			380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil				
039	8	J	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil				
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			200	60										
			230	60										
041	3	н	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil				
041			400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil				
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			200	60										
			230	60		#0 000	_	#0/0 400		#0/0 400 las:				
042	5	Н	380 400	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil		#3/0 ~ 400 kcmil #3/0 ~ 400 kcmil				
				50		#2 - 600 kcmil		#3/0 ~ 400 kcmil	3					
			460 575	60 60	2	#2 - 600 kcmil #2 - 600 kcmil	2	#1 ~ 500 kcmil #1 ~ 500 kcmil	2	#1 ~ 500 kcmil #1 ~ 500 kcmil				
			200	60		#Z - OUU KUIIII		#1 - JUU KUIIII		#1 - JUU KUIIIII				
			230	60										
	_	_	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil				
042	8	J	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil				
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			200	60										
			230	60										
044	3	G	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil				
U44	3	G	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil		#3/0 ~ 400 kcmil				
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			200	60										
			230	60					ļ	<u> </u>				
047	5	J	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil		#3/0 ~ 400 kcmil				
			400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil				
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil				

Table 4 - Electrical lug data (cont'd)

						High	n airflow/High static condenser fans				
	Field	d wiring	lugs		Teri	minal block		uit breaker	Non-fus	sed disconnect switch	
	/AA mod	del Evap	Input volts	Input freq.	Wires per	Lug wire range	Wires per phase	Lug wire range	Wires per phase	Lug wire range	
Tame	Jona	Lvap	VOILS	neq.	phase	<u> </u>			priase		
	1		200	60		Dual point wi	ring	T			
			230	60							
	_		380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
036	8	J	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			200	60							
			230	60							
037	3	F	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
007		•	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			200	60							
			230 380	60 60	2	#2 - 600 kcmil	2	#3/0 ~ 400 kcmil	2	#3/0 ~ 400 kcmil	
037	5	ı	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			200	60		#2 - 000 KCIIII		#1 * 500 KGIIII		#1 * 500 KGIIII	
			230	60							
			380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
039	8	J	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			200	60							
			230	60							
041	3	Н	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
041	3		400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			200	60							
			230	60		//a aaa i ii		//a/a 400 i ii		//a/a //a /	
042	5	Н	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	3 2	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			575 200	60 60		#2 - 600 kcmil		#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			230	60							
			380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
042	8	J	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			200	60							
			230	60							
044	3	G	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
044		G	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			200	60							
			230	60							
047	5	J	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	

SECTION 4 - INSTALLATION Form 201.28-NM1.1 Issue date: 08/06/2021

Table 4 - Electrical lug data (cont'd)

					Ι	Standa	rd and u	tra quiet conden	ear fanc		
	Field	d wiring	lugs		Teri	minal block		cuit breaker	Non-fused disconnect switch		
YV	AA mod	del		l. ,	Wires		Wires				
Frame	me Cond Evap		Input volts	Input freq.	per phase	Lug wire range	per phase	Lug wire range	Wires per phase	Lug wire range	
						Dual point wiri	ng				
			200	60							
			230	60							
048	3	G	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
040	3	G	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			200	60							
			230	60							
49	49 0	К	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
49	"	_ ^	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			200	60							
			230	60							
050	o	J	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
030	"	J	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			200	60							
			230	60							
052	3	J	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
032	3	J	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	

Table 4 - Electrical lug data (cont'd)

						High air	flow/hig				
	Field	l wiring	lugs		Ter	minal block	Cir	cuit breaker	Non-fused disconnect switch		
YV	AA mod	lel		l	Wires		Wires		Wires		
Frame	Cond			Input freq.	per phase	Lug wire range	per phase	Lug wire range	per phase	Lug wire range	
						Dual point wiring	g				
			200	60							
			230	60							
048	3	G	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
040			400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			200	60							
		K	230	60							
49	0		380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
49	"		400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	3	#3/0 ~ 400 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			200	60							
			230	60							
050	0	J	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
050	"	J	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	
			200	60							
			230	60							
052	3	J	380	60	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
032	"	"	400	50	3	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			460	60	2	#2 - 600 kcmil	3	#3/0 ~ 400 kcmil	3	#3/0 ~ 400 kcmil	
			575	60	2	#2 - 600 kcmil	2	#1 ~ 500 kcmil	2	#1 ~ 500 kcmil	

	Field	wiri	ing lugs		Tern	ninal block	indeper	al block with ndent system it breakers	Terminal block with inde- pendent system non-fused disconnect switches		
						Single point v	wiring				
YVA	A mode	ı					\A/:				
Frame	Cond	Evap	Input volts	Input freq.	Wires per phase	Lug wire range	Wires per phase	Lug wire range	Wires per phase	Lug wire range	
			200	60							
			230	60							
Mo	odels		380	60	4	#1 - 750 kcmil	4	#1 - 750 kcmil	4	#1 - 750 kcmil	
0368	to 052	3	400	50	4	#1 - 750 kcmil	4	#1 - 750 kcmil	4	#1 - 750 kcmil	
			460	60	4	#1 - 750 kcmil	4	#1 - 750 kcmil	4	#1 - 750 kcmil	
			575	60	4	#1 - 750 kcmil	4	#1 - 750 kcmil	4	#1 - 750 kcmil	

FORM 201.28-NM1.1 ISSUE DATE: 12/18/2020

THIS PAGE IS INTENTIONALLY LEFT BLANK

Ġ

Section 5 - Technical data

The data shown within the tables of this chapter, are applicable to selected typical configurations. Other configurations are available through our configuration and selection software.

Contact your nearest Johnson Controls Sales Office for the chiller configuration that best matches your specific needs.

SECTION 5 - TECHNICAL DATA

Form 201.28-NM1.1
Issue date: 08/06/2021

Table 5 - Physical data - Microchannel coil

Unit frame	15	16	17	18	19	19	20	21	21	21
Condenser code	3	5	8	3	5	8	0	3	5	8
Evaporator code	В	В	С	Α	Α	В	С	Α	С	С
General unit data										
Number of Independent Refrigerant Circuits						2				
Refrigerant Charge, R-134a, R-513A, Ckt1/ Ckt2, lb (kg)	175/175 (80/80)	190/190 (86/86)	225/225 (102/102)	175/155 (80/70)	190/170 (86/78)	220/195 (100/89)	205/205 (93/93)	175/175 (80/80)	225/225 (102/102)	240/240 (109/109)
Oil Charge, Ckt1/Ckt2, gal (L)	2.1/2.0 (8.0/ 7.7)	2.2/2.2 (8.5/ 8.5)	2.5/2.5 (9.3/ 9.3)	2.4/2.0 (9.2/ 7.7)	2.6/2.1 (9.7/ 8.0)	2.7/2.2 (10.4/ 8.5)	2.6/2.6 (10.0/ 10.0)	2.5/2.5 (9.3/ 9.3)	2.8/2.8 (10.5/ 10.5)	2.9/2.9 (10.8/ 10.8)
Minimum Load, %						10				
Chassis Dimensions - Length, in. (mm)	203.3 (5163)	247.2 (6280)	291.2 (7397)	247 (6274)	291.2 (7397)	335.2 (8514)	226 (5741)	291.2 (7397)	291.2 (7397)	335.2 (8514)
Chassis Dimensions - Width, in. (mm)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)
Chassis Dimensions - Height, in. (mm)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)
Compressors, semi-herme	tic screw	<u> </u>								
Quantity in each chiller						2				
Condenser fans										
Number Ckt-1/Ckt-2	4/4	5/5	6/6	6/4	7/5	8/6	4/4	6/6	6/6	7/7
Air on Condenser (Min/Max), °F (°C)						131 (.8/55)				
Evaporator, shell and tube	hybrid fa	alling film	l ²							
Water Volume, gal (L)	58 (220)	58 (220)	71 (269)	48 (182)	48 (182)	58 (220)	71 (269)	48 (182)	71 (269)	71(269)
Leaving Water Temperature (Min/Max), °F (°C) 3						0/60 /15.6)				
Maximum Water Side Pressure, psig (barg)						50 0.3)				
Maximum Refrigerant Side Pressure, psig (barg)						235 6.2)				
Evap Drain Connection, in. (mm)	3/4									
Minimum Chilled Water Flow Rate, gpm (L/s)	250 (15.8)	250 (15.8)	300 (18.9)	200 (12.6)	200 (12.6)	250 (15.8)	300 (18.9)	200 (12.6)	300 (18.9)	300 (18.9)
Maximum Chilled Water Flow Rate, gpm (L/s)	950 (59.9)	950 (59.9)	1150 (72.6)	750 (47.3)	750 (47.3)	950 (59.9)	1150 (72.6)	750 (47.3)	1150 (72.6)	1150 (72.6)
Inlet and Outlet Water Connections, in.	6	6	6	6	6	6	6	6	6	6

Notes

^{1.} Shipping and operating weights shown are for base unit; selected options may add weight to unit. Contact your nearest Johnson Controls Sales office for weight data.

^{2.} For leaving liquid temperature below 40°F (4.4°C) or above 60°F (15.6°C), contact your nearest Johnson Controls Sales Office for application requirements.

Table 5 - Physical data - Microchannel coil (cont'd)

Unit frame	23	24	24	26	27	27	27	27	29	30
Condenser code	3	5	8	3	0	3	5	8	5	3
Evaporator code	В	С	С	В	D	D	E	E	Е	С
General unit data										
Number of Independent Refrigerant Circuits						2				
Refrigerant Charge, R-134a, R-513A, Ckt1/ Ckt2, lb (kg)	210/190 (96/86)	250/225 (114/102)	250/250 (114/114)	210/210 (96/96)	250/250 (114/114)	265/265 (121/121)	265/265 (121/121)	270/270 (123/123)	310/265 (141/121)	290/245 (132/112)
Oil Charge, Ckt1/Ckt2, gal (L)	2.7/2.6 (10.1/ 9.7)	2.9/2.8 (11.1/ 10.5)	2.9/2.9 (11.1/ 11.1)	2.7/2.7 (10.1/ 10.1)	3.0/3.0 (11.4/ 11.4)	3.0/3.0 (11.4/ 11.4)	3.0/3.0 (11.4/ 11.4)	3.1/3.1 (11.6/ 11.6)	3.8/3.1 (14.4/ 11.7)	3.7/3.0 (14.0/ 11.4)
Minimum Load, %		,	,			10		,		
Chassis Dimensions - Length, in. (mm)	291.2 (7397)	335.2 (8514)	379.1 (9631)	335.2 (8514)	291.2 (7397)	335.2 (8514)	335.2 (8514)	379.2 (9631)	379.2 (9631)	379.2 (9631)
Chassis Dimensions - Width, in. (mm)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)
Chassis Dimensions - Height, in. (mm)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)
Compressors, semi-herme	tic screw	,								
Qty per Chiller						2				
Condenser fans										
Number Ckt-1/Ckt-2	7/5	8/6	8/8	7/7	6/6	7/7	7/7	8/8	9/7	9/7
Air on Condenser (Min/Max), °F (°C)						/131 7.8/55)				
Evaporator, shell and tube	hybrid fa	lling film	2							
Water Volume, gal (L)	58(220)	71(269)	71(269)	58(220)	82(310)	82(310)	113(428)	113(428)	113(428)	71(269)
Leaving Water Temperature (Min/Max), °F (°C) 3					-	0/60 4/15.6)				
Maximum Water Side Pressure, psig (barg)						150 10.3)				
Maximum Refrigerant Side Pressure, psig (barg)						235 16.2)				
Evap Drain Connection, in. (mm)	3/4									
Minimum Chilled Water Flow Rate, gpm (L/s)	250 (15.8)	300 (18.9)	300 (18.9)	250 (15.8)	300 (18.9)	300 (18.9)	400 (25.2)	400 (25.2)	400 (25.2)	300 (18.9)
Maximum Chilled Water Flow Rate, gpm (L/s)	950 (59.9)	1150 (72.6)	1150 (72.6)	950 (59.9)	1150 (72.6)	1150 (72.6)	1500 (94.7)	1500 (94.7)	1500 (94.7)	1150 (72.6)
Inlet and Outlet Water Connections, in.	6	6	6	6	6	6	8	8	8	6

Notes:

- 1. Shipping and operating weights shown are for base unit; selected options may add weight to unit. Contact your nearest Johnson Controls Sales office for weight data.
- 2. For leaving liquid temperature below 40°F (4.4°C) or above 60°F (15.6°C), contact your nearest Johnson Controls Sales Office for application requirements.

SECTION 5 - TECHNICAL DATA

Form 201.28-NM1.1 Issue date: 08/06/2021

Table 5 - Physical data - Microchannel coil (cont'd)

Unit frame	30	30	31	32	33	34	34	36	37
Condenser code	5	8	8	3	3	3	5	8	3
Evaporator code	С	E	E	E	С	Е	Е	J	F
General unit data									
Number of Independent Refrigerant Circuits					2				
Refrigerant Charge, R-134a, or R-513A, Ckt1/Ckt2, lb (kg)	295/250 (134/114)	315/275 (143/125)	315/295 (143/134)	295/295 (134/134)	290/290 (132/132)	310/310 (141/141)	315/315 (143/143)	475/320 (215/145)	420/245 (190/111)
Oil Charge, Ckt1/Ckt2, gal (L)	3.7/3.0 (14.0/ 11.4)	3.9/3.2 (14.8/ 12.1)	3.9/3.3 (14.8/ 12.5)	3.7/3.7 (14.0/ 14.0)	3.7/3.7 (14.0/ 14.0)	3.8/3.8 (14.4/ 14.4)	3.9/3.9 (14.8/ 14.8)	4.1/4.0 (15.5/ 15.1)	4.0/2.9 (15.1/ 11.0)
Minimum Load, %					10				
Chassis Dimensions - Length, in. (mm)	423.1 (10748)	423.1 (10748)	467.1 (11865)	379.2 (9631)	423.1 (10748)	423.1 (10748)	467.1 (11865)	511 (12979)	467.1 (11864)
Chassis Dimensions - Width, in. (mm)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2243)	88.3 (2243)
Chassis Dimensions - Height, in. (mm)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.7 (2405)	94.7 (2405)
Compressors, semi-hermetic	screw								
Quantity in each chiller		,		,	2				
Condenser fans									
Number Ckt-1/Ckt-2	10/8	10/8	8/8	8/8	9/9	9/9	10/10	14/8	13/7
Air on Condenser (Min/Max), °F (°C)					0/125 (-17.8/51.7)				
Evaporator, shell and tube hyl	orid falling f	ilm ²							
Water Volume, gal (L)	71 (269)	113 (428)	113 (428)	113 (428)	71 (269)	113 (428)	113 (428)	147 (556)	96 (363)
Leaving Water Temperature (Min/Max), °F (°C) ²					40/60 (4.4/15.6)				
Maximum Water Side Pressure, psig (barg)					150 (10.3)				
Maximum Refrigerant Side Pressure, psig (barg)					235 (16.2)				
Evap Drain Connection, in. (mm)					3/4				
Minimum Chilled Water Flow Rate, gpm (L/s)	300 (18.9)	400 (25.2)	400 (25.2)	400 (25.2)	300 (18.9)	400 (25.2)	400 (25.2)	550 (34.1)	460 (29.0)
Maximum Chilled Water Flow Rate, gpm (L/s)	1150 (72.6)	1500 (94.7)	1500 (94.7)	1500 (94.7)	1150 (72.6)	1500 (94.7)	1500 (94.7)	1880 (118.1)	1540 (97.0)
Inlet and Outlet Water Connections, in.	6	8	8	8	6	8	8	8	8

Notes:

- 1. Shipping and operating weights shown are for base unit; selected options may add weight to unit. Contact your nearest Johnson Controls Sales office for weight data.
- 2. For leaving liquid temperature below 40°F (4.4°C) or above 60°F (15.6°C), contact your nearest Johnson Controls Sales Office for application requirements.

Table 5 - Physical data - Microchannel coil (cont'd)

Unit frame	37	39	41	42	42	44	47	48	49	50	52
Condenser code	5	8	3	5	8	3	5	3	0	0	3
Evaporator code	ı	J	Н	Н	J	G	J	G	K	J	J
General unit data											
Number of Independent Refrigerant Circuits						2					
Refrigerant Charge, R-134a, or R-513A, Ckt1/Ckt2, lb (kg)	470/310 (213/140)	475/360 (215/163)	460/345 (209/156)	480/365 (217/165)	475/385 (215/175)	370/370 (168/168)	445/445 (202/202)	385/385 (175/175)	390/390 (179/179)	405/405 (184/184)	445/445 (202/202)
Oil Charge, Ckt1/Ckt2, gal (L)	4.1/3.8 (15.5/ 14.4)	4.1/4.1 (15.5/ 15.5)	4.0/4.0 (15.1/ 15.1)	4.1/4.1 (15.5/ 15.5)	4.1/4.1 (15.5/ 15.5)	4.0/4.0 (15.1/ 15.1)	4.2/4.2 (15.9/ 15.9)	4.0/4.0 (15.1/ 15.1)	4.0/4.0 (15.1/ 15.1)	4.0/4.0 (15.1/ 15.1)	4.2/4.2 (15.9/ 15.9)
Minimum Load, %						10					
Chassis Dimensions - Length, in. (mm)	467.1 (11864)	555.3 (14104)	467.1 (11864)	555.3 (14104)	599.3 (15222)	555.3 (14104)	599.3 (15222)	599.3 (15222)	467.1 (11864)	467.1 (11865)	599.3 (15222)
Chassis Dimensions - Width, in. (mm)	88.3 (2243)	88.4 (2244)	88.3 (2242)	88.3 (2243)	88.3 (2243)						
Chassis Dimensions - Height, in. (mm)	94.7 (2405)	94.6 (2403)	94.7 (2405)	94.7 (2405)							
Compressors, semi-hermetic	screw										
Quantity in each chiller			,		,	2	,			,	
Condenser fans											
Number Ckt-1/Ckt-2	13/7	14/10	12/8	14/10	14/12	12/12	13/13	13/13	10/10	10/10	13/13
Air on Condenser (Min/Max), °F (°C)						0/125					
Evaporator, shell and tube hyb		<u> </u>									
Water Volume, gal (L)	147(556)	147(556)	130(492)	130(492)	147(556)	96(363)	147(556)	96(363)	130 (492)	147(556)	147(556)
Leaving Water Temperature (Min/Max), °F (°C)²						40/60 (4.4/15.6))				
Maximum Water Side Pressure, psig (barg)						150 (10.3)					
Maximum Refrigerant Side Pressure, psig (barg)						235 (16.2)					
Evap Drain Connection, in. (mm)	3/4										
Minimum Chilled Water Flow Rate, gpm (L/s)	550 (34.1)	550 (34.1)	520 (33.0)	520 (33.0)	550 (34.1)	460 (29.0)	550 (34.1)	460 (29.0)	470 (30)	550 (34.1)	550 (34.1)
Maximum Chilled Water Flow Rate, gpm (L/s)	1880 (118.1)	1880 (118.1)	1700 (107.0)	1700 (107.0)	1880 (118.1)	1540 (97.0)	1880 (118.1)	1540 (97.0)	1870 (118)	1880 (118.1)	1880 (118.1)
Inlet and Outlet Water Connections, in.	8	8	8	8	8	8	8	8	8	8	8

Notes:

- 1. Shipping and operating weights shown are for base unit; selected options may add weight to unit. Contact your nearest Johnson Controls Sales office for weight data.
- 2. For leaving liquid temperature below 40°F (4.4°C) or above 60°F (15.6°C), contact your nearest Johnson Controls Sales Office for application requirements.

SECTION 5 - TECHNICAL DATA

Form 201.28-NM1.1
Issue date: 08/06/2021

Table 6 - Physical data - Round tube coil

Unit frame	15	18	20	21	23	26	27	27	30
Condenser code	3	3	0	3	3	3	0	3	3
Evaporator code	В	Α	С	Α	В	В	D	D	С
General unit data			,			,	,	,	
Number of Independent Refrigerant Circuits					2				
Refrigerant Charge, R-134a, Ckt1/Ckt2, lb (kg)	210/210 (96/96)	229/191 (104/87)	241/241 (109/109)	229/229 (104/104)	273/235 (124/107)	273/273 (124/124)	304/304 (138/138)	328/328 (149/149)	371/308 (168/140)
Oil Charge, Ckt1/Ckt2, gal (L)	2.1/2.0 (8.0/7.7)	2.4/2.0 (9.2/7.7)	2.6/2.6 (9.9/9.9)	2.5/2.5 (9.5/9.5)	2.7/2.6 (10.3/9.9)	2.7/2.7 (10.3/10.3)	3.0/3.0 (11.4/11.4)	3.0/3.0 (11.4/11.4)	3.7/3.0 (14.0/11.4)
Minimum Load, %					10				
Chassis Dimensions - Length, in. (mm)	203.3 (5163)	247 (6274)	226 (5740)	291.2 (7397)	291.2 (7397)	335.2 (8514)	291.2 (7397)	335.2 (8514)	379.2 (9631)
Chassis Dimensions - Width, in. (mm)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2242)
Chassis Dimensions - Height, in. (mm)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.6 (2403)
Compressors, semi-hermetic scr	ew				•	•	•	•	•
Quantity in each Chiller					2				
Condenser fans									
Number Ckt-1/Ckt-2	4/4	6/4	4/4	6/6	7/5	7/7	6/6	7/7	9/7
Air on Condenser (Min/Max), °F (°C)					0/125 (-17.8/51.7))			
Evaporator, shell and tube hybric	l falling film	1							
Water Volume, gal (L)	58 (220)	48 (182)	71 (269)	48 (182)	58 (220)	58 (220)	82 (310)	82 (310)	71 (269)
Leaving Water Temperature (Min/Max), °F (°C) ²					40/60 (4.4/15.6)				
Maximum Water Side Pressure, psig (barg)					150 (10.3)				
Maximum Refrigerant Side Pressure, psig (barg)					235 (16.2)				
Evap Drain Connection, in. (mm)					3/4				
Minimum Chilled Water Flow Rate, gpm (L/s)	250 (15.8)	200 (12.6)	300 (18.9)	200 (12.6)	250 (15.8)	250 (15.8)	300 (18.9)	300 (18.9)	300 (18.9)
Maximum Chilled Water Flow Rate, gpm (L/s)	950 (59.9)	750 (47.3)	1150 (72.6)	750 (47.3)	950 (59.9)	950 (59.9)	1150 (72.6)	1150 (72.6)	1150 (72.6)
Inlet and Outlet Water Connections, in.	6	6	6	6	6	6	6	6	6

Notes:

Shipping and operating weights shown are for base unit; selected options may add weight to unit. Contact your nearest Johnson Controls Sales office for weight data.

- 1. R-513A is not an option.
- 2. For leaving liquid temperature below 40°F (4.4°C) or above 60°F (15.6°C), contact your nearest Johnson Controls Sales Office for application requirements.

Table 6 - Physical data - Round tube coil (cont'd)

Unit frame	32	33	34	37	41	44	48	49	50	52
Condenser code	3	3	3	3	3	3	3	0	0	3
Evaporator code	E	С	E	F	Н	G	G	K	J	J
General unit data										
Number of Independent Refrigerant Circuits					2	2				
Refrigerant Charge, R-134a, Ckt1/Ckt2, lb (kg)	367/367 (166/166)	371/371 (168/168)	391/391 (177/177)	537/308 (244/140)	568/417 (258/189)	478/478 (217/217)	502/502 (228/228)	480/480 (218/218)	495/495 (224/224)	562/562 (255/255)
Oil Charge, Ckt1/Ckt2, gal (L)	3.7/3.7 (14.0/ 14.0)	3.7/3.7 (14.0/ 14.0)	3.8/3.8 (14.4/ 14.4)	4.0/2.9 (15.1/ 11.0)	4.0/4.0 (15.1/ 15.1)	4.0/4.0 (15.1/ 15.1)	4.0/4.0 (15.1/ 15.1)	4.0/4.0 (15.1/ 15.1)	4.0/4.0 (15.1/ 15.1)	4.2/4.2 (15.9/ 15.9)
Minimum Load, %					1	0				
Chassis Dimensions - Length, in. (mm)	379.2 (9631)	423.1 (10748)	423.1 (10748)	467.1 (11864)	467.1 (11864)	555.3 (14104)	599.3 (15222)	467.1 (11864)	467.1 (11864)	599.3 (15222)
Chassis Dimensions - Width, in. (mm)	88.3 (2242)	88.3 (2242)	88.3 (2242)	88.3 (2243)	88.3 (2243)	88.3 (2243)	88.4 (2244)	88.3 (2242)	88.4 (2244)	88.3 (2243)
Chassis Dimensions - Height, in. (mm)	94.6 (2403)	94.6 (2403)	94.6 (2403)	94.7 (2405)	94.7 (2405)	94.7 (2405)	94.7 (2405)	94.6 (2403)	94.7 (2405)	94.7 (2405)
Compressors, semi-hermetic scr	ew									
Qty per Chiller					2	2				
Condenser fans										
Number Ckt-1/Ckt-2	8/8	9/9	9/9	13/7	12/8	12/12	13/13	10/10	10/10	13/13
Air on Condenser (Min/Max), °F (°C)						125 3/51.7)				
Evaporator, shell and tube hybrid										
Water Volume, gal (L)	113 (428)	71 (269)	113 (428)	96 (363)	130 (492)	96 (363)	96 (363)	130 (492)	147 (556)	147 (556)
Leaving Water Temperature (Min/Max), °F (°C) ²						/60 15.6)				
Maximum Water Side Pressure, psig (barg)						50).3)				
Maximum Refrigerant Side Pressure, psig (barg)						35 3.2)				
Evap Drain Connection, in. (mm) 3/4										
Minimum Chilled Water Flow Rate, gpm (L/s)	400 (25.2)	300 (18.9)	400 (25.2)	460 (29.0)	520 (33.0)	460 (29.0)	460 (29.0)	470 (30)	550 (34.1)	550 (34.1)
Maximum Chilled Water Flow Rate, gpm (L/s)	1500 (94.7)	1150 (72.6)	1500 (94.7)	1540 (97.0)	1700 (107.0)	1540 (97.0)	1540 (97.0)	1870 (118)	1880 (118.1)	1880 (118.1)
Inlet and Outlet Water Connections, in	8	6	8	8	8	8	8	8	8	8

Notes:

Shipping and operating weights shown are for base unit; selected options may add weight to unit. Contact your nearest Johnson Controls Sales office for weight data.

- 1. R-513A is not an option.
- 2. For leaving liquid temperature below 40°F (4.4°C) or above 60°F (15.6°C), contact your nearest Johnson Controls Sales Office for application requirements.

SECTION 5 - TECHNICAL DATA

Form 201.28-NM1.1
Issue date: 08/06/2021

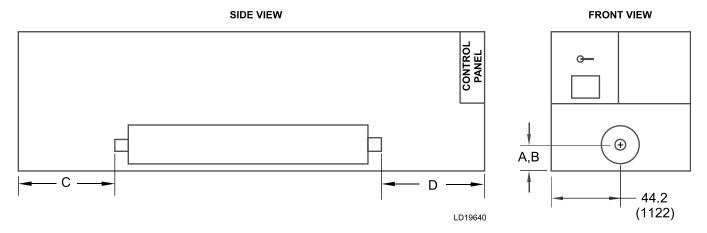


Table 7 - Optional one-pass evaporator

	All dimensions - in. (mm)												
YV	ΆΑ												
Frame	Cond.	A,B	С	D	E-nozzle size	Water volume gal (L)	Minimum chilled water flow rate GPM (L/S)	Maximum chilled water flow rate GPM (L/S)					
15	3	20.8 (528)	6.8 (173)	34.5 (876)	8	58 (220)	500 (32)	1970 (124)					
16	5	20.8 (528)	29.2 (742)	56.1 (1425)	8	58 (220)	500 (32)	1970 (124)					
17	8	20.8 (528)	34.9 (886)	70 (1778)	8	71 (269)	590 (37)	2190 (138)					
18	3	19.8 (503)	17.7 (450)	56.8 (1443)	6	48 (182)	400 (25)	1230 (77)					
19	5	19.8 (503)	61.5 (1562)	56.7 (1440)	6	48 (182)	400 (25)	1230 (77)					
19	8	21 (533)	117.3 (2979)	56.1 (1425)	8	58 (220)	500 (32)	1970 (124)					
20	0	20.8 (528)	1.7 (43)	38.1 (968)	8	71 (269)	590 (37)	2190 (138)					
21	3	19.8 (503)	61.7 (1567)	56.8 (1443)	6	48 (182)	400 (25)	1230 (77)					
21	5	20.8 (528)	34.9 (886)	70 (1778)	8	71 (269)	590 (37)	2190 (138)					
21	8	21 (533)	78.9 (2004)	70 (1778)	8	71 (269)	590 (37)	2190 (138)					

Note: Minimum Chilled Water Flow Rate is for full load selections; Variable Primary Flow ratings as low as 50% of the minimum are permittted. Glycol limits are higher. Contact your Johnson Controls Sales Office for ratings and further information.

SIDE VIEW FRONT VIEW A,B D 44.2 (1122)

LD19640

Table 7 - Optional one-pass evaporator (cont'd)

					All dimensions	s - in. (mm)		
YV	AA							
Frame	Cond.	A,B	С	D	E-nozzle size	Water volume gal (L)	Minimum chilled water flow rate GPM (L/S)	Maximum chilled water flow rate GPM (L/S)
23	3	20.8 (528)	73.2 (1859)	56.1 (1425)	8	58 (220)	500 (32)	1970 (124)
24	5	21 (533)	92.9 (2360)	56.1 (1425)	8	71 (269)	590 (37)	2190 (138)
24	8	21 (533)	122.9 (3122)	70 (1778)	8	71 (269)	590 (37)	2190 (138)
26	3	21 (533)	117.1 (2974)	56.1 (1425)	8	58 (220)	500 (32)	1970 (124)
27	0	21 (533)	16.8 (427)	51.9 (1318)	8	82 (310)	590 (37)	2190 (138)
27	3	21 (533)	42.9 (1090)	70 (1778)	8	82 (310)	590 (37)	2190 (138)
27	5	22.5 (572)	44.7 (1135)	71.8 (1824)	10	113 (428)	810 (51)	3200 (202)
27	8	22.5 (572)	88.3 (2243)	71.8 (1824)	10	113 (428)	810 (51)	3200 (202)
29	5	22.5 (572)	88.6 (2250)	71.8 (1824)	10	113 (428)	810 (51)	3200 (202)
30	3	21 (533)	122.9 (3122)	70 (1778)	8	71 (269)	590 (37)	2190 (138)

Note: Minimum Chilled Water Flow Rate is for full load selections; Variable Primary Flow ratings as low as 50% of the minimum are permittted. Glycol limits are higher. Contact your Johnson Controls Sales Office for ratings and further information.

SECTION 5 - TECHNICAL DATA

Form 201.28-NM1.1
Issue date: 08/06/2021

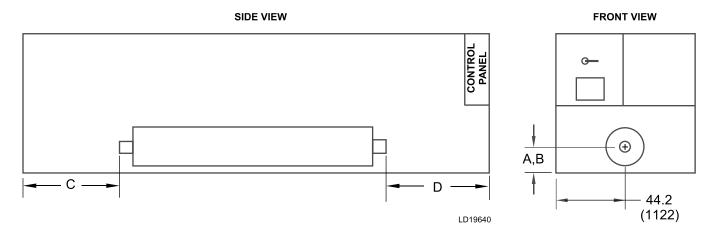


Table 7 - Optional one-pass evaporator (cont'd)

	All dimensions - in. (mm)												
YV	AA												
Frame	Cond.	A,B	С	D	E-nozzle size	Wwater volume gal (L)	Minimum chilled water flow rate GPM (L/S)	Maximum chilled water flow rate GPM (L/S)					
30	5	21 (533)	166.9 (4239)	70 (1778)	8	71 (269)	590 (37)	2190 (138)					
30	8	22.5 (572)	132.2 (3358)	71.8 (1824)	10	113 (428)	810 (51)	3200 (202)					
31	8	22.5 (572)	176.6 (4486)	71.8 (1824)	10	113 (428)	810 (51)	3200 (202)					
32	3	22.5 (572)	88.6 (2250)	71.8 (1824)	10	113 (428)	810 (51)	3200 (202)					
33	3	21 (533)	166.9 (4239)	70 (1778)	8	71 (269)	590 (37)	2190 (138)					
34	3	22.5 (572)	132.6 (3368)	71.8 (1824)	10	113 (428)	810 (51)	3200 (202)					
34	5	22.5 (572)	176.21 (4476)	71.8 (1824)	10	113 (428)	810 (51)	3200 (202)					
36	8	23.3 (592)	208.6 (5298)	83.5 (2121)	10	147 (556)	1090 (69)	3420 (215)					
37	3	22.3 (566)	180.9 (4595)	112.2 (2850)	10	96 (363)	840 (53)	3320 (209)					
37	5	23.3 (592)	164.3 (4173)	83.4 (2118)	10	147 (556)	1090 (69)	3420 (215)					

Note: Minimum Chilled Water Flow Rate is for full load selections; Variable Primary Flow ratings as low as 50% of the minimum are permitted. Glycol limits are higher. Contact your Johnson Controls Sales Office for ratings and further information.

Table 7 - Optional one-pass evaporator (cont'd)

					All dimensions	s - in. (mm)		
YV	AA							
Frame	Cond.	A,B	С	D	E-nozzle size	Wwater volume gal (L)	Minimum chilled water flow rate GPM (L/S)	Maximum chilled water flow rate GPM (L/S)
39	8	23.3 (592)	252.5 (6414)	83.5 (2121)	10	147 (556)	1090 (69)	3420 (215)
41	3	22.5 (572)	164.6 (4181)	83.8 (2129)	10	130 (492)	940 (59)	3420 (215)
42	5	22.5 (572)	252.6 (6416)	83.8 (2129)	10	130 (492)	940 (59)	3420 (215)
42	8	23.3 (592)	296.5 (7531)	83.5 (2121)	10	147 (556)	1090 (69)	3420 (215)
44	3	22.3 (566)	287.1 (7292)	94.2 (2393)	10	96 (363)	840 (53)	3320 (209)
47	5	23.3 (592)	308.4 (7833)	71.5 (1816)	10	147 (556)	1090 (69)	3420 (215)
48	3	22.3 (566)	331.2 (8412)	94.2 (2393)	10	96 (363)	840 (53)	3320 (209)
49	0	22.5 (571)	176.5 (4482)	71.7 (1820)	10	130 (492)	940 (59)	3420 (215)
50	0	23.3 (592)	176.2 (4475)	71.5 (1816)	10	147 (556)	1090 (69)	3420 (215)
52	3	23.3 (592)	308.4 (7833)	71.5 (1816)	10	147 (556)	1090 (69)	3420 (215)

Note: Minimum Chilled Water Flow Rate is for full load selections; Variable Primary Flow ratings as low as 50% of the minimum are permitted. Glycol limits are higher. Contact your Johnson Controls Sales Office for ratings and further information.

SECTION 5 - TECHNICAL DATA

Form 201.28-NM1.1
Issue date: 08/06/2021

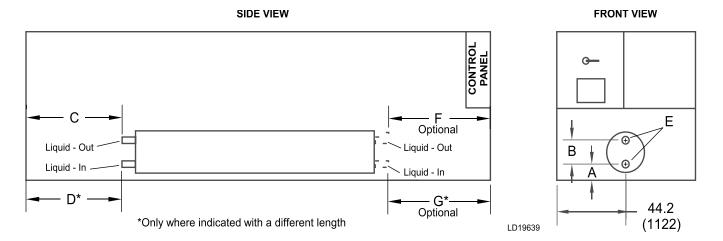


Table 8 - Standard two-pass, rear inlet/outlet evaporator

						All dimension	ons - in. ((mm)			
YV	ΆΑ									Minimum	Maximum
Frame	Cond.	A	В	С	D	E-nozzle size	F	G	Water volume gal (L)	Minimum chilled water flow rate GPM (L/S)	Maximum chilled water flow rate GPM (L/S)
15	3	15.1 (384)	11.4 (290)	6.8 (173)		6	34.5 (876)		58 (220)	250 (16)	980 (62)
16	5	15.1 (384)	11.4 (290)	29.4 (747)		6	56.1 (1425)		58 (220)	250 (16)	980 (62)
17	8	15.1 (384)	11.4 (290)	34.9 (886)		6	70 (1778)		71 (269)	300 (19)	1170 (74)
18	3	14.1 (358)	11.4 (290)	17.7 (450)		6	56.8 (1443)		48 (182)	200 (13)	790 (50)
19	5	14.1 (358)	11.4 (290)	61.5 (1562)		6	56.7 (1440)		48 (182)	200 (13)	790 (50)
19	8	15.3 (389)	11.4 (290)	117.3 (2979)		6	56.1 (1425)		58 (220)	250 (16)	980 (62)
20	0	15.1 (384)	11.4 (290)	1.7 (43)		6	38.1 (968)		71 (269)	300 (19)	1170 (74)
21	3	14.1 (358)	11.4 (290)	61.7 (1567)		6	58.8 (1494)		48 (182)	200 (13)	790 (50)
21	5	15.1 (384)	11.4 (290)	29.9 (759)		6	70 (1778)		71 (269)	300 (19)	1170 (74)
21	8	15.3 (389)	11.4 (290)	78.9 (2004)		6	70.3 (1786)		71 (269)	300 (19)	1170 (74)

Note: Minimum Chilled Water Flow Rate is for full load selections; Variable Primary Flow ratings as low as 50% of the minimum are permitted. Glycol limits are higher. Contact your Johnson Controls Sales Office for ratings and further information.

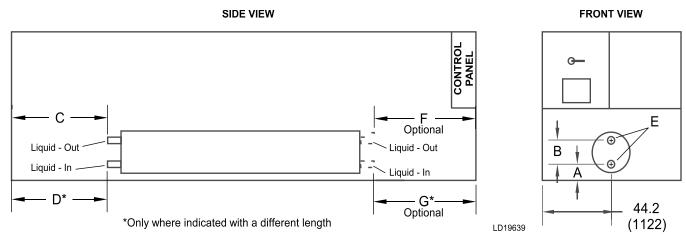


Table 8 - Standard two-pass, rear inlet/outlet evaporator (cont'd)

						All dimensi	ons - in. ((mm)			
YV	ΆΑ									Minimo	Marrian
Frame	Cond.	A	В	С	D	E-nozzle size	F	G	Water volume gal (L)	Minimum chilled water flow rate GPM (L/S)	Maximum chilled water flow rate GPM (L/S)
23	3	15.1 (384)	11.4 (290)	73.3 (1862)		6	56.1 (1425)		58 (220)	250 (16)	980 (62)
24	5	15.3 (389)	11.4 (290)	29.9 (759)		6	56.1 (1425)		71 (269)	300 (19)	1170 (74)
24	8	15.3 (389)	11.4 (290)	122.9 (3122)		6	70 (1778)		71 (269)	300 (19)	1170 (74)
26	3	15.3 (389)	11.4 (290)	117.3 (2979)		6	56.1 (1425)		58 (220)	250 (16)	980 (62)
27	0	15.3 (388)	11.4 (290)	16.8 (427)		6	51.9 (1318)		82 (310)	300 (19)	1170 (74)
27	3	15.3 (389)	11.4 (290)	42.9 (1090)		6	70 (1778)		82 (310)	300 (19)	1170 (74)
27	5	15.5 (394)	14 (356)	44.3 (1125)		8	71.8 (1824)		113 (428)	410 (26)	1600 (101)
27	8	15 (381)	14 (356)	88.3 (2243)		8	71.8 (1824)		113 (428)	410 (26)	1600 (101)
29	5	15.5 (394)	14 (356)	88.3 (2243)		8	71.8 (1824)		113 (428)	410 (26)	1600 (101)
30	3	15.3 (389)	11.4 (290)	122.9 (3122)		6	70 (1778)		71 (269)	300 (19)	1170 (74)

Note: Minimum Chilled Water Flow Rate is for full load selections; Variable Primary Flow ratings as low as 50% of the minimum are permitted. Glycol limits are higher.Contact your Johnson Controls Sales Office for ratings and further information.

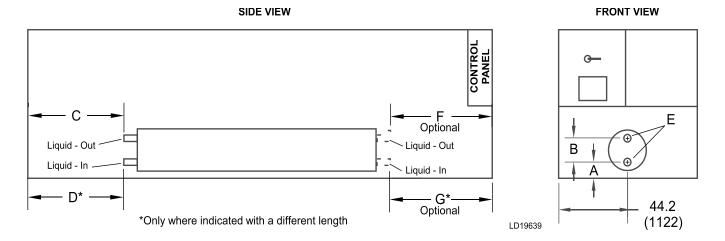
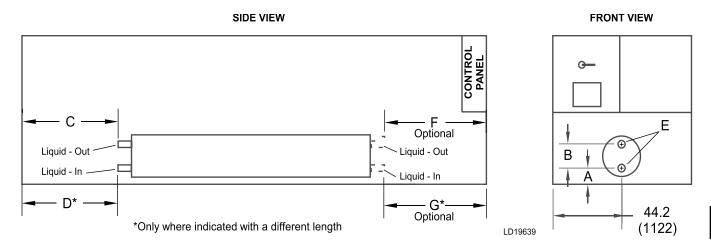



Table 8 - Standard two-pass, rear inlet/outlet evaporator (cont'd)

						All dimensio	ns - in. (mm)			
YV	AA									Minimum	Maximum
Frame	Cond.	A	В	С	D	E-nozzle size	F	G	Water volume gal (L)	chilled water flow rate GPM (L/S)	chilled water flow rate GPM (L/S)
30	5	15.3 (389)	11.4 (290)	166.8 (4237)		6	70 (1778)		71 (269)	300 (19)	1170 (74)
30	8	15.5 (394)	14 (356)	132.2 (3358)		8	83.4 (2118)		113 (428)	410 (26)	1600 (101)
31	8	15.5 (394)	14 (356)	176.21 (4476)		8	83.4 (2118)		113 (428)	410 (26)	1600 (101)
32	3	15.5 (394)	14 (356)	88.6 (2250)		8	83.4 (2118)		113 (428)	410 (26)	1600 (101)
33	3	15.3 (389)	11.4 (290)	166.9 (4239)		6	83.4 (2118)		71 (269)	300 (19)	1170 (74)
34	3	15.5 (394)	14 (356)	132.2 (3358)		8	83.4 (2118)		113 (428)	410 (26)	1600 (101)
34	5	15.5 (394)	14 (356)	176.2 (4475)		8	83.4 (2118)		113 (428)	410 (26)	1600 (101)
36	8	16.3 (414)	14 (356)	208.5 (5296)		8	83.4 (2118)		147 (556)	550 (35)	2160 (136)
37	3	15.8 (401)	13 (330)	180.9 (4595)	176.4 (4480)	8	112.2 (2850)	107.7 (2735)	96 (363)	420 (26)	1660 (105)
37	5	16.3 (414)	14 (356)	164.4 (4176)		8	83.4 (2118)		147 (556)	550 (35)	2160 (136)

Note: Minimum Chilled Water Flow Rate is for full load selections; Variable Primary Flow ratings as low as 50% of the minimum are permitted. Glycol limits are higher. Contact your Johnson Controls Sales Office for ratings and further information.

Table 8 - Standard two-pass, rear inlet/outlet evaporator (cont'd)

						All dimensio	ns - in. (mm)			
YV	AA									Minimum	Maximum
Frame	Cond.	A	В	С	D	E-nozzle size	F	G	Water volume gal (L)	chilled water flow rate GPM (L/S)	chilled water flow rate GPM (L/S)
39	8	16.3 (414)	14 (356)	252.5 (6414)		8	83.5 (2121)		147 (556)	550 (35)	2160 (136)
41	3	15.5 (394)	14 (356)	164.6 (4181)		8	83.8 (2129)		130 (492)	470 (30)	1870 (118)
42	5	15.5 (394)	14 (356)	252.6 (6416)		8	83.8 (2129)		130 (492)	470 (30)	1870 (118)
42	8	16.3 (414)	14 (356)	296.5 (7531)		8	83.5 (2121)		147 (556)	550 (35)	2160 (136)
44	3	15.8 (401)	13 (330)	287.1 (7292)	282.5 (7177)	8	94.2 (2393)	89.7 (2278)	96 (363)	420 (26)	1660 (105)
47	5	16.3 (414)	14 (356)	308.4 (7833)		8	71.5 (1816)		147 (556)	550 (35)	2160 (136)
48	3	15.8 (401)	13 (330)	331.2 (8412)	326.6 (8296)	8	94.2 (2393)	89.7 (2278)	96 (363)	420 (26)	1660 (105)
49	0	15.5 (394)	14 (355)	176.5 (4482)		8	71.7 (1820)		130 (492)	470 (30)	1870 (118)
50	0	16.3 (414)	14 (356)	176.2 (4475)		8	71.5 (1816)		147 (556)	550 (35)	2160 (136)
52	3	16.3 (414)	14 (356)	308.4 (7833)		8	71.5 (1816)		147 (556)	550 (35)	2160 (136)

Note: Minimum Chilled Water Flow Rate is for full load selections; Variable Primary Flow ratings as low as 50% of the minimum are permitted. Glycol limits are higher. Contact your Johnson Controls Sales Office for ratings and further information.

SECTION 5 - TECHNICAL DATA

Form 201.28-NM1.1
Issue date: 08/06/2021

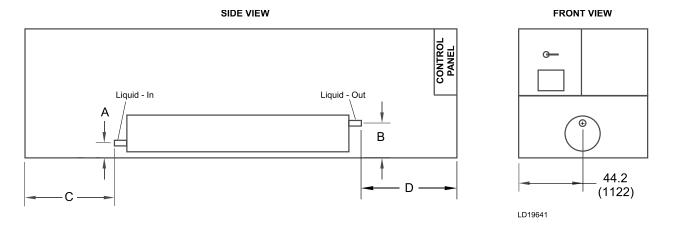
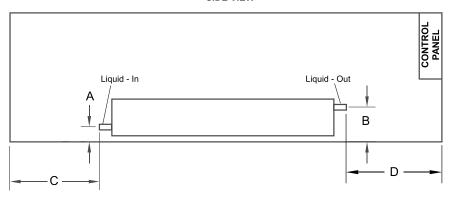



Table 9 - Optional three-pass rear inlet/front outlet evaporator

					All dimen	sions - in. (m	m)		
YV	AA								
Frame	Cond.	A	В	С	D	E- nozzle size	Water volume gal (L)	Minimum chilled water flow rate GPM (L/S)	Maximum chilled water flow rate GPM (L/S)
15	3	15.1 (384)	26.5 (673)	6.8 (173)	34.5 (876)	5	58 (220)	170 (11)	650 (41)
16	5	15.1 (384)	26.5 (673)	29.2 (742)	56.1 (1425)	5	58 (220)	170 (11)	650 (41)
17	8	15.1 (384)	26.5 (673)	34.9 (886)	70 (1778)	6	71 (269)	200 (13)	780 (49)
18	3	25.5 (648)	25.5 (648)	17.7 (450)	56.8 (1443)	5	48 (182)	130 (8)	520 (33)
19	5	14.1 (358)	25.5 (648)	61.5 (1562)	56.7 (1440)	5	48 (182)	130 (8)	520 (33)
19	8	15.3 (389)	26.7 (678)	117.3 (2979)	56.1 (1425)	5	58 (220)	170 (11)	650 (41)
20	0	15.1 (384)	26.53 (674)	1.7 (43)	38.1 (968)	6	71 (269)	200 (13)	780 (49)
21	3	14.1 (358)	25.5 (648)	61.6 (1565)	58.8 (1494)	5	48 (182)	130 (8)	520 (33)
21	5	15.1 (384)	26.5 (673)	34.9 (886)	70 (1778)	6	71 (269)	200 (13)	780 (49)
21	8	15.3 (389)	26.7 (678)	78.9 (2004)	70.3 (1786)	6	71 (269)	200 (13)	780 (49)

Note: Minimum Chilled Water Flow Rate is for full load selections; Variable Primary Flow ratings as low as 50% of the minimum are permitted. Glycol limits are higher. Contact your Johnson Controls Sales Office for ratings and further information.

SIDE VIEW

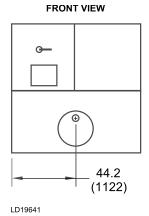


Table 9 - Optional three-pass rear inlet/front outlet evaporator (cont'd)

					All dimen	sions - in. (m	m)		
YV	AA								
Frame	Cond.	A	В	С	D	E- nozzle size	Water volume gal (L)	Minimum chilled water flow rate GPM (L/S)	Maximum chilled water flow rate GPM (L/S)
23	3	14.1 (358)	25.5 (648)	73.2 (1859)	56.1 (1425)	5	58 (220)	170 (11)	650 (41)
24	5	15.3 (389)	26.7 (678)	29.9 (759)	56.1 (1425)	6	71 (269)	200 (13)	780 (49)
24	8	15.3 (389)	26.7 (678)	122.9 (3122)	70 (1778)	6	71 (269)	200 (13)	780 (49)
26	3	15.3 (389)	26.7 (678)	117.1 (2974)	56.1 (1425)	5	58 (220)	170 (11)	650 (41)
27	0	15.3 (388)	26.7 (678)	16.8 (427)	51.9 (1318)	6	82 (310)	200 (13)	780 (49)
27	3	15.3 (389)	26.7 (678)	42.9 (1090)	70 (1778)	6	82 (310)	200 (13)	780 (49)
27	5	15.5 (394)	29.5 (749)	88.6 (2250)	71.8 (1824)	6	113 (428)	270 (17)	1060 (67)
27	8	15.5 (394)	29.5 (749)	88.3 (2243)	71.8 (1824)	6	113 (428)	270 (17)	1060 (67)
29	5	15.5 (394)	29.5 (749)	88.6 (2250)	71.8 (1824)	6	113 (428)	270 (17)	1060 (67)
30	3	15.3 (389)	26.7 (678)	122.9 (3122)	70 (1778)	6	71 (269)	200 (13)	780 (49)

Note: Minimum Chilled Water Flow Rate is for full load selections; Variable Primary Flow ratings as low as 50% of the minimum are permitted. Glycol limits are higher. Contact your Johnson Controls Sales Office for ratings and further information.

SECTION 5 - TECHNICAL DATA

Form 201.28-NM1.1
Issue date: 08/06/2021

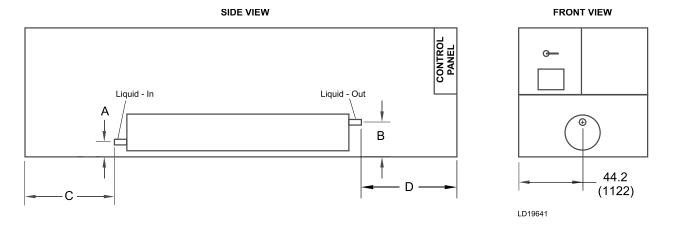
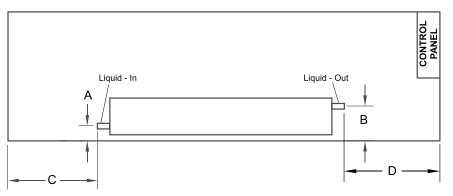



Table 9 - Optional three-pass rear inlet/front outlet evaporator (cont'd)

					All dime	nsions - in. (mı	m)		
YV	AA								
Frame	Cond.	A	В	С	D	E-nozzle size	Water volume gal (L)	Minimum chilled water flow rate GPM (L/S)	Maximum chilled water flow rate GPM (L/S)
30	5	15.3 (389)	26.7 (678)	166.9 (4239)	70 (1778)	6	71 (269)	200 (13)	780 (49)
30	8	15 (381)	30.3 (770)	132.2 (3358)	71.8 (1824)	6	113 (428)	270 (17)	1060 (67)
31	8	15 (381)	29.5 (749)	176.6 (4486)	71.8 (1824)	6	113 (428)	270 (17)	1060 (67)
32	3	15.5 (394)	29.5 (749)	88.6 (2250)	71.8 (1824)	6	113 (428)	270 (17)	1060 (67)
33	3	15.3 (389)	26.7 (678)	166.9 (4239)	70 (1778)	6	71 (269)	200 (13)	780 (49)
34	3	15.5 (394)	29.5 (749)	132.6 (3368)	71.8 (1824)	6	113 (428)	270 (17)	1060 (67)
34	5	15.5 (394)	29.5 (749)	176.2 (4475)	71.8 (1824)	6	113 (428)	270 (17)	1060 (67)
36	8	16.3 (414)	30.3 (770)	208.6 (5298)	83.5 (2121)	8	147 (556)	370 (23)	1440 (91)
37	3	15.8 (401)	28.8 (732)	180.9 (4595)	112.2 (2850)	6	94 (356)	280 (18)	1100 (69)
37	5	16.3 (414)	30.3 (770)	164.3 (4173)	83.4 (2118)	8	147 (556)	370 (23)	1440 (91)

Note: Minimum Chilled Water Flow Rate is for full load selections; Variable Primary Flow ratings as low as 50% of the minimum are permitted. Glycol limits are higher. Contact your Johnson Controls Sales Office for ratings and further information.

SIDE VIEW



Table 9 - Optional three-pass rear inlet/front outlet evaporator (cont'd)

					All dime	nsions - in. (mi	m)		
YV	AA								
Frame	Cond.	A	В	С	D	E-nozzle size	Water volume gal (L)	Minimum chilled water flow rate GPM (L/S)	Maximum chilled water flow rate GPM (L/S)
39	8	16.3 (414)	30.3 (770)	252.5 (6414)	83.5 (2121)	8	147 (556)	370 (23)	1440 (91)
41	3	15.5 (394)	29.5 (749)	164.6 (4181)	83.8 (2129)	6	128 (485)	320 (20)	1230 (77)
42	5	15.5 (394)	29.5 (749)	252.6 (6416)	83.8 (2129)	6	128 (485)	320 (20)	1230 (77)
42	8	16.3 (414)	30.3 (770)	296.5 (7531)	83.5 (2121)	8	147 (556)	370 (23)	1440 (91)
44	3	15.8 (401)	28.8 (732)	287.1 (7292)	94.2 (2393)	6	94 (356)	280 (18)	1100 (69)
47	5	16.3 (414)	30.3 (770)	308.4 (7833)	71.5 (1816)	8	147 (556)	370 (23)	1440 (91)
48	3	15.8 (401)	28.8 (732)	331.2 (8412)	94.2 (2393)	6	94 (356)	280 (18)	1100 (69)
49	0	15.5 (394)	29.5 (749)	176.2 (4476)	71.5 (1817)	6	130 (492)	320 (20)	1230 (77)
50	0	16.3 (414)	30.3 (770)	176.2 (4475)	71.5 (1816)	8	147 (556)	370 (23)	1440 (91)
52	3	16.3 (414)	30.3 (770)	308.4 (7833)	71.5 (1816)	8	147 (556)	370 (23)	1440 (91)

Note: Minimum Chilled Water Flow Rate is for full load selections; Variable Primary Flow ratings as low as 50% of the minimum are permitted. Glycol limits are higher. Contact your Johnson Controls Sales Office for ratings and further information.

SECTION 5 - TECHNICAL DATA

Form 201.28-NM1.1
Issue date: 08/06/2021

The following data is applicable to select configurations. Other configurations are available through our configuration/selection software. Contact your nearest Johnson Controls Sales Office for the chiller configuration that best matches your specific needs.

Figure 21 - YVAA dimensions

THIS PAGE IS INTENTIONALLY LEFT BLANK

Form 201.28-NM1.1 **SECTION 5 - TECHNICAL DATA** Issue date: 08/06/2021

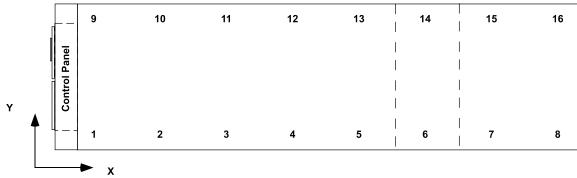


Table 10 - Isolator selection and mounting locations

LD18587

YVAA	configur	ation	Description	1	2	3	4	5	6	7	8
Frame	Cond	Evap	Description	"			4	, s	_ °		<u> </u>
015	3	В	Isolator X-Dimension	10 (263)	73 (1852)	144 (3662)	193 (4900)				
			Isolator Y-Dimension					(34)			
016	5	В	Isolator X-Dimension	10 (263)	77 (1943)	118 (3000)	157 (3985)	220 (5589)			
			Isolator Y-Dimension				1	(34)			
017	8	С	Isolator X-Dimension	10 (263)	81 (2057)	149 (3779)	187 (4756)	251 (6368)			
			Isolator Y-Dimension					(34)			
018	3	Α	Isolator X-Dimension	10 (263)	76 (1943)	124 (3152)	163 (4137)	210 (5323)			
			Isolator Y-Dimension					(34)			
019	5	Α	Isolator X-Dimension	10 (259)	76 (1939)	118 (2997)	157 (3982)	208 (5295)	281 (7132)		
			Isolator Y-Dimension					(34)			
019	8	В	Isolator X-Dimension	10 (263)	76 (1943)	118 (3000)	157 (3985)	209 (5299)	308 (7823)		
			Isolator Y-Dimension					(34)			
020	0	С	Isolator X-Dimension	10 (263)	76 (1943)	118 (3000)	157 (3985)	209 (5299)	281 (7136)		
			Isolator Y-Dimension					(34)			
021	3	Α	Isolator X-Dimension	10 (263)	81 (2057)	149 (3779)	187 (4756)	251 (6368)			
			Isolator Y-Dimension					(34)			
021	5	С	Isolator X-Dimension	10 (263)	81 (2057)	149 (3779)	187 (4756)	251 (6368)			
			Isolator Y-Dimension				1	(34)			
021	8	С	Isolator X-Dimension	10 (263)	81 (2057)	149 (3779)	187 (4756)	235 (5968)	301 (7653)		
			Isolator Y-Dimension				1	(34)			
023	3	В	Isolator X-Dimension	10 (263)	76 (1943)	118 (2999)	157 (3984)	209 (5298)	281 (7135)		
			Isolator Y-Dimension			· · · · · ·	1	(34)			•
024	5	С	Isolator X-Dimension	10 (263)	76 (1943)	128 (3260)	173 (4391)	220 (5579)	301 (7654)		
			Isolator Y-Dimension			1	(34)				
024	8	С	Isolator X-Dimension	10 (263)	81 (2057)	143 (3638)	187 (4748)	245 (6232)	339 (8609)		
			Isolator Y-Dimension		•	•	1	(34)	• • •		

- Contact your nearest Johnson Controls Sales Office for weight data.
 All isolator mounting holes are 19 mm.
 Dimensions are in inches (mm).

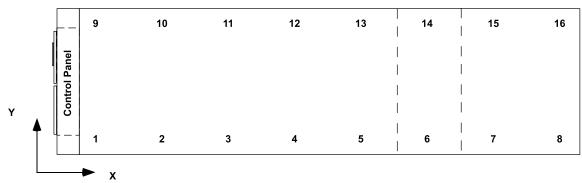


Table 10 - Isolator selection and mounting locations (cont'd)

LD18587

YVAACO	NFIGUE	RATION		1							
Frame	Cond	Evap	Descriptio	9	10	11	12	13	14	15	16
015	3	В	Isolator X-Dimension	10 (263)	73 (1852)	144 (3662)	193 (4900)				
			Isolator Y-Dimension				87	(2206)			
016	5	В	Isolator X-Dimension	10 (263)	77 (1943)	118 (3000)	157 (3985)	220 (5589)			
			Isolator Y-Dimension		_		87	(2206)			
017	8	С	Isolator X-Dimension	10 (263)	81 (2057)	149 (3779)	187 (4756)	251 (6368)			
			Isolator Y-Dimension					(2206)			
018	3	Α	Isolator X-Dimension	10 (263)	76 (1943)	124 (3152)	163 (4137)	210 (5323)			
			Isolator Y-Dimension					(2206)			
019	5	Α	Isolator X-Dimension	10 (259)	76 (1939)	118 (2997)	157 (3982)	208 (5295)	281 (7132)		
			Isolator Y-Dimension				-	(2206)			
019	8	В	Isolator X-Dimension	10 (263)	76 (1943)	118 (3000)	157 (3985)	209 (5299)	308 (7823)		
			Isolator Y-Dimension				87	(2206)			
020	0	С	Isolator X-Dimension	10 (263)	76 (1943)	118 (3000)	157 (3985)	209 (5299)	281 (7136)		
			Isolator Y-Dimension					(2206)			
021	3	Α	Isolator X-Dimension	10 (263)	81 (2057)	149 (3779)	187 (4756)	251 (6368)			
			Isolator Y-Dimension					(2206)			
021	5	С	Isolator X-Dimension	10 (263)	81 (2057)	149 (3779)	187 (4756)	251 (6368)			
			Isolator Y-Dimension				87	(2206)			
021	8	С	Isolator X-Dimension	10 (263)	81 (2057)	149 (3779)	187 (4756)	235 (5968)	301 (7653)		
			Isolator Y-Dimension				87	(2206)			
023	3	В	Isolator X-Dimension	10 (263)	76 (1943)	118 (2999)	157 (3984)	209 (5298)	281 (7135)		
			Isolator Y-Dimension		,		87	(2206)			
024	5	С	Isolator X-Dimension	10 (263)	76 (1943)	128 (3260)	173 (4391)	220 (5579)	301 (7654)		
	5 C		Isolator Y-Dimension					(2206)			
024	8	С	Isolator X-Dimension	10 (263)	81 (2057)	143 (3638)	187 (4748)	245 (6232)	339 (8609)		
			Isolator Y-Dimension	<u> </u>	/	. , ,		(2206)	· /		

- Contact your nearest Johnson Controls Sales Office for weight data.
 All isolator mounting holes are 19 mm.
 Dimensions are in inches (mm).

Form 201.28-NM1.1 **SECTION 5 - TECHNICAL DATA** Issue date: 08/06/2021

Table 10 - Isolator selection and mounting locations (cont'd)

Parame Cond Evap Description 1 2 3 4 5 6 7 8	YVAA	configur	ation	December 41 and							_	
Solator X-Dimension Cab	Frame	Cond	Evap	Description	1		3	4	5	6	<i>'</i>	8
1027 0 D Isolator X-Dimension 10 81 149 187 (6709)	026	3	В	Isolator X-Dimension						1		
				Isolator Y-Dimension					<u>, </u>			
Description Content	027	0	D	Isolator X-Dimension								
1027 3				Isolator Y-Dimension					(34)			
1027 5 E	027	3	D	Isolator X-Dimension	1	1						
1027 5				Isolator Y-Dimension		,	,		` 	,	·	
Solator X-Dimension 10	027	5	E					(5105)	(7654)			
Solator X-Dimension Solator Y-Dimension			Isolator Y-Dimension			Y		<u>` </u>	r	ı .		
Solator X-Dimension 10	027	8	E		1			(5105)	(7582)	1		
Solator X-Dimension (263) (2057) (4095) (5105) (7512) (8609)				Isolator Y-Dimension		i	ĭ		<u>· </u>	ř	ï	
Solator X-Dimension 10	029	5	E		1					1		
Solator X-Dimension (263) (2057) (3638) (4748) (6232) (8608)				Isolator Y-Dimension					<u> </u>			
10	030	3	С	Isolator X-Dimension					l	1		
Solator X-Dimension (260) (2057) (3663) (4755) (7047) (9726)				Isolator Y-Dimension				1	(34)			
030 8 E Isolator X-Dimension 10 (260) 81 (2054) 161 (2054) 201 (5102) 298 (7579) 383 (9723) 383 (9724) <	030	5	С	Isolator X-Dimension				I		1		
Solator X-Dimension Canal			Isolator Y-Dimension					(34)				
Isolator Y-Dimension 1 (34) 298 427 (10843) 1 (263) (2057) (4084) (5105) (7582) (10843) 2	030	8	E	Isolator X-Dimension						1		
Solator X-Dimension (263) (2057) (4084) (5105) (7582) (10843)				Isolator Y-Dimension	<u> </u>			1	(34)	. , , ,		•
032 3 E Isolator X-Dimension 10 (263) (2057) (4084) (5105) (7582) (8609) 339 (8609) 339 (8609) 339 (8609) 339 (8609) 339 (8609) 339 (8609) 339 (8609) 339 (8609) 339 (8609) 339 (8609) 339 (8609) 339 (8609) 339 (8609) 339 (8609) 330 (8609)	031	8	E	Isolator X-Dimension					l	1		
032 3 E Isolator X-Dimension (263) (2057) (4084) (5105) (7582) (8609) Isolator X-Dimension 033 3 C Isolator X-Dimension 10 81 143 188 245 383 (9726) (9726) 034 3 E Isolator Y-Dimension 10 81 161 201 298 383 (9726) (9726) Isolator Y-Dimension 10 81 161 201 298 383 (9726) (972				Isolator Y-Dimension	<u> </u>	, , ,	, ,	1	(34)	, , ,		•
033 3 C Isolator X-Dimension 10 (263) 81 (2057) 143 (3636) 148 (4781) 245 (6232) 383 (9726) 383 (9726) 034 3 E Isolator X-Dimension 10 (263) 81 (2057) 161 (201) 298 (9726) 383 (9726) 1034 Isolator Y-Dimension 10 (263) 81 (2057) 161 (201) 298 (9726) 427 (9726) 1034 Isolator X-Dimension 10 (263) 81 (2057) 161 (201) 298 (10843) 427 (10843) 1036 Isolator Y-Dimension 10 (263) 81 (2057) 145 (205) 284 (383) 439 (495) 1036 8 (263) 10 (263) 145 (2057) 205 (284) 383 (9725) 495 (11157) 1036 10 (263) 10 (263) 145 (2057) 205 (284) 383 (9725) 439 (12577) 1036 10 (263) 10 (2057) 10 (3680) 10 (5219) 10 (7218) 11575) 11577) 11577) 11577)	032	3	E	Isolator X-Dimension					l	1		
033 3 C Isolator X-Dimension (263) (2057) (3636) (4781) (6232) (9726) 034 3 E Isolator X-Dimension 10 81 161 201 298 383 (9726)<				Isolator Y-Dimension	<u> </u>	, , ,	,	1	(34)			•
Isolator Y-Dimension 1 (34)	033	3	С	Isolator X-Dimension		_				1		
034 3 E Isolator X-Dimension (263) (2057) (4084) (5105) (7582) (9726) Isolator X-Dimension 034 5 E Isolator X-Dimension 10 (263) 81 (2057) 161 (201) 298 (427) 427 (10843) 428 (10843) <th></th> <th></th> <th></th> <td>Isolator Y-Dimension</td> <td></td> <td>,</td> <td>,</td> <td></td> <td></td> <td>, ,</td> <td>L</td> <td></td>				Isolator Y-Dimension		,	,			, ,	L	
Isolator Y-Dimension 1 (34)	034	3	E	Isolator X-Dimension						1		
034 5 E Isolator X-Dimension (263) (2057) (4084) (5105) (7582) (10843) Isolator X-Dimension 036 8 J Isolator X-Dimension 10 81 145 205 284 383 439 495 (263) (263) (2057) (3680) (5219) (7218) (9725) (11157) (12577)			_	Isolator Y-Dimension		, ,	,			, ,	L	
Isolator Y-Dimension 1 (34) 036 8 J Isolator X-Dimension 10 81 145 205 284 383 439 495 (263) (2057) (3680) (5219) (7218) (9725) (11157) (12577)	034	5	E	Isolator X-Dimension				201	298	1		
036 8 J Isolator X-Dimension 10 81 145 205 284 383 439 495 (263) (263) (2057) (3680) (5219) (7218) (9725) (11157) (12577)			_	Isolator Y-Dimension	`/	/	/			1 (/	ı	
	036	8	J					205	284	1		
				Isolator Y-Dimension	(_00)	1 (===:)	(5555)			1 (0.20)	1 (<u> (.=5, ,)</u>

Notes:

- Contact your nearest Johnson Controls Sales Office for weight data.
 All isolator mounting holes are 19 mm.
 Dimensions are in inches (mm).

Table 10 - Isolator selection and mounting locations (cont'd)

YVAACC	NFIGUE	RATION	Description		40	44	40	42	44	45	46
Frame	Cond	Evap	Descriptio	9	10	11	12	13	14	15	16
026	3	В	Isolator X-Dimension	10 (263)	77 (1943)	118 (2999)	157 (3984)	209 (5298)	308 (7823)		
			Isolator Y-Dimension				87	(2206)			
027	0	D	Isolator X-Dimension	10 (263)	81 (2057)	149 (3779)	187 (4756)	264 (6709)			
		Isolator Y-Dimension				1	(34)				
027	3	D	Isolator X-Dimension	10 (263)	81 (2057)	161 (4084)	201 (5105)	301 (7654)			
			Isolator Y-Dimension		_		87	(2206)			
027	5	E	Isolator X-Dimension	10 (263)	81 (2057)	161 (4084)	201 (5105)	301 (7654)			
			Isolator Y-Dimension				87	(2206)			
027	8	E	Isolator X-Dimension	10 (263)	81 (2057)	161 (4095)	201 (5105)	298 (7582)	339 (8609)		
			Isolator Y-Dimension					(2206)			
029	5	E	Isolator X-Dimension	10 (263)	81 (2057)	161 (4095)	201 (5105)	296 (7512)	339 (8609)		
			Isolator Y-Dimension				87	(2206)		•	
030	3	С	Isolator X-Dimension	10 (263)	81 (2057)	143 (3638)	187 (4748)	245 (6232)	339 (8608)		
			Isolator Y-Dimension			, ,	87	(2206)			
030	5	С	Isolator X-Dimension	10 (260)	81 (2057)	144 (3663)	187 (4755)	277 (7047)	383 (9726)		
			Isolator Y-Dimension				87	(2206)			
030	8	E	Isolator X-Dimension	10 (260)	81 (2054)	161 (4081)	201 (5102)	298 (7579)	383 (9723)		
			Isolator Y-Dimension		, ,	,		(2206)			
031	8	E	Isolator X-Dimension	10 (263)	81 (2057)	161 (4084)	201 (5105)	298 (7582)	427 (10843)		
			Isolator Y-Dimension	, ,	, ,	,		(2206)	, , ,		
032	3	E	Isolator X-Dimension	10 (263)	81 (2057)	161 (4084)	201 (5105)	298 (7582)	339 (8609)		
			Isolator Y-Dimension	,	, ,	,		(2206)		1	
033	3	С	Isolator X-Dimension	10 (263)	81 (2057)	143 (3636)	188 (4781)	245 (6232)	383 (9726)		
	· ·		Isolator Y-Dimension	(===)	(===:)	(0000)		(2206)	(0.20)	<u>I</u>	
			Isolator X-Dimension	10	81	161	201	298	383		
034	3	E	Isolator Y-Dimension	(263)	(2057)	(4084)	(5105)	(7582) (2206)	(9726)		
				10	81	161	201	298	427		
034	5	E	Isolator X-Dimension	(263)	(2057)	(4084)	(5105)	(7582)	(10843)		
			Isolator Y-Dimension	10	01	145	205	(2206)	202	420	405
036	8	J	Isolator X-Dimension	10 (263)	81 (2057)	(3680)	(5219)	284 (7218)	383 (9725)	439 (11157)	495 (12577)
			Isolator Y-Dimension				87	(2206)			

- Notes:
 1. Contact your nearest Johnson Controls Sales Office for weight data.
 2. All isolator mounting holes are 19 mm.
 3. Dimensions are in inches (mm).

Form 201.28-NM1.1 SECTION 5 - TECHNICAL DATA Issue date: 08/06/2021

Table 10 - Isolator selection and mounting locations (cont'd)

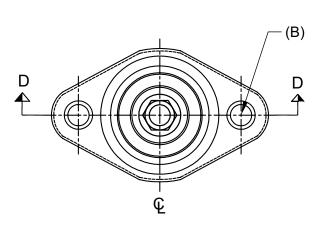
YVAA	configur	ation	Decembelon					_		_		
Frame	Cond	Evap	Description	1	2	3	4	5	6	7	8	
007		_	Isolator X-Dimension	10	81	145	206	284	427			
037 3 F		F	Isolator Y-Dimension	(263) (2057) (3680) (5219) (7218) (10842) 1 (34)								
			Isolator Y-Dimension	10	81	145	206	284	427	1	1	
037	5	ı	Isolator X-Dimension	(263)	(2057)	(3680)	(5219)	(7218)	(10842)			
			Isolator Y-Dimension		•	•	1	(34)	•	•		
			Isolator X-Dimension	10	81	145	206	284	427	483	539	
039	8	J	ISOIALOI A-DIIIIEIISIOII	(263)	(2057)	(3680)	(5219)	(7218)	(10842)	(12274)	(13694)	
			Isolator Y-Dimension					(34)				
			Isolator X-Dimension	10	81	145	205	284	427			
041	041 3 H	Н		(263)	(2057)	(3680)	(5219)	(7218)	(10843)			
			Isolator Y-Dimension		Y			(34)			,	
			Isolator X-Dimension	10	81	145	206	284	427	483	539	
042	042 5 H	Н		(254)	(2057)	(3680)	(5219)	(7218)	(10842)	(12274)	(13694)	
			Isolator Y-Dimension	1 (34)								
		J	.	Isolator X-Dimension	10	81	145	205	284	427	505	562
042	8			(260)	(2054)	(3677)	(5216)	(7215)	(10839)	(12817)	(14262)	
			Isolator Y-Dimension					(34)				
		3 G	Isolator X-Dimension	10	81	154	206	284	427	483	539	
044	3		G		(263)	(2057)	(3907)	(5219)	(7218)	(10842)	(12274)	(13694)
			Isolator Y-Dimension	1 (34)								
		<u> </u>		10	81	154	206	284	427	505	562	
047	5	J	Isolator X-Dimension	(263)	(2057)	(3907)	(5219)	(7218)	(10842)	(12820)	(14265)	
			Isolator Y-Dimension	(/	1 (/	()	, , ,	(34)	1 (/	1 7	10 7	
				10	81	154	206	284	427	505	562	
048	3	G	Isolator X-Dimension	(263)	(2057)	(3907)	(5219)	(7218)	(10842)	(12820)	(14265)	
			Isolator Y-Dimension				1	(34)	•			
			Is alsten V Dinas assis a	10	81	154	205	284	427			
049	0	K	Isolator X-Dimension	(263)	(2057)	(3907)	(5219)	(7218)	(10842)			
			Isolator Y-Dimension			•	1	(34)	•	•		
			Isolator X-Dimension	10	81	154	205	284	427			
050	0 J Isolator	J		(263)	(2057)	(2908)	(5219)	(7218)	(10843)			
			Isolator Y-Dimension				1	(34)				
			Isolator X-Dimension	10	81	154	206	284	427	505	562	
052	3	J	19019[0] V-DIIIIC119[0]]	(263)	(2057)	(3907)	(5219)	(7218)	(10842)	(12820)	(14265)	
			Isolator Y-Dimension				1	(34)				

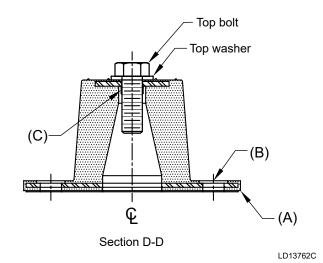
Notes:

Contact your nearest Johnson Controls Sales Office for weight data.
 All isolator mounting holes are 19 mm.
 Dimensions are in inches (mm).

Table 10 - Isolator selection and mounting locations (cont'd)

YVAACC	NFIGUE	RATION	Description		40	44	40	42	44	45	46	
Frame	Cond	Evap	Descriptio	9	10	11	12	13	14	15	16	
037	3	F	Isolator X-Dimension	10 (263)	81 (2057)	145 (3680)	206 (5219)	284 (7218)	427 (10842)			
			Isolator Y-Dimension				87	(2206)				
037	5	ı	Isolator X-Dimension	10 (263)	81 (2057)	145 (3680)	206 (5219)	284 (7218)	427 (10842)			
			Isolator Y-Dimension		, , ,	,	87	(2206)	, , , ,			
			Isolator X-Dimension	10	81	145	206	284	427	483	539	
039	8	J	ISOIALOI A-DIMENSION	(263)	(2057)	(3680)	(5219)	(7218)	(10842)	(12274)	(13694)	
			Isolator Y-Dimension				87	(2206)				
			Isolator X-Dimension	10	81	145	205	284	427			
041	1 3 H	041 3 H	Н		(263)	(2057)	(3680)	(5219)	(7218)	(10843)		
			Isolator Y-Dimension		1			(2206)	T			
	_		Isolator X-Dimension	10	81	145	206	284	427	483	539	
042	042 5 H	5 H	Н	Is alster V Directories	(254)	(2057)	(3680)	(5219)	(7218)	(10842)	(12274)	(13694)
			Isolator Y-Dimension	40	l 04	445		(2206)	107	505	500	
040	042 8 J	١.	Isolator X-Dimension	10 (260)	81 (2054)	145 (3677)	205 (5216)	284 (7215)	427 (10839)	505 (12817)	562 (14262)	
042		J	Isolator Y-Dimension	(200)	(2034)	(3077)		(2206)	(10039)	(12017)	(14202)	
			ISOIAIOI I-DIITIETISIOTI	10	81	154	206	284	427	483	539	
044	3	3 G	Isolator X-Dimension	(263)	(2057)	(3907)	(5219)	(7218)	(10842)	(12274)	(13694)	
•••			Isolator Y-Dimension	87 (2206)						(10001)		
				10	81	154	206	284	427	505	562	
047	5	J	Isolator X-Dimension	(263)	(2057)	(3907)	(5219)	(7218)	(10842)	(12820)	(14265)	
			Isolator Y-Dimension				87	(2206)				
		_	Isolator X-Dimension	10	81	154	206	284	427	505	562	
048	3	G		(263)	(2057)	(3907)	(5219)	(7218)	(10842)	(12820)	(14265)	
			Isolator Y-Dimension	10	04	154		(2206)	407			
049	0	ĸ	Isolator X-Dimension	10 (263)	81 (2057)	(3907)	205 (5219)	284 (7218)	427 (10842)			
049	"	, r	Isolator Y-Dimension	(200)	(2007)	(0307)		(2206)	[(100+2)			
				10	81	154	205	284	427			
050	0	J	Isolator X-Dimension	(263)	(2057)	(2908)	(5219)	(7218)	(10843)			
			Isolator Y-Dimension		/	, ,	, ,	(2206)	/			
			Inclutor V Dimonsion	10	81	154	206	284	427	505	562	
052	3	J	Isolator X-Dimension	(263)	(2057)	(3907)	(5219)	(7218)	(10842)	(12820)	(14265)	
			Isolator Y-Dimension				87	(2206)				

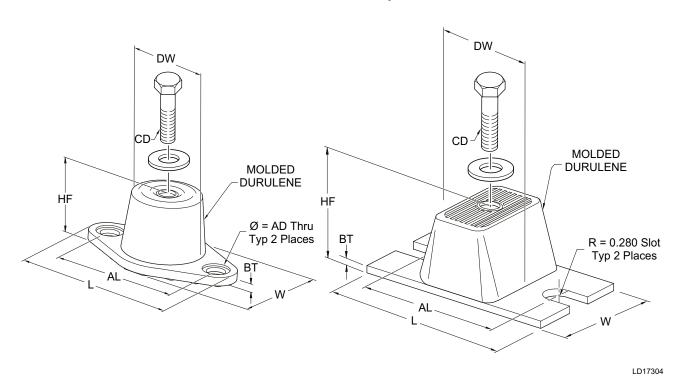

Notes:


- Contact your nearest Johnson Controls Sales Office for weight data.
 All isolator mounting holes are 19 mm.
 Dimensions are in inches (mm).

SECTION 5 - TECHNICAL DATA

Form 201.28-NM1.1
Issue date: 08/06/2021

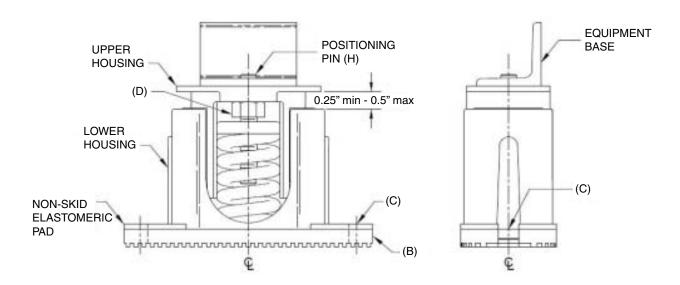
Elastomeric isolator installation



Read the following instructions before beginning installation.

- 1. Isolators are shipped fully assembled and are to be positioned in accordance with the submittal drawings or as otherwise recommended.
- 2. Set isolators on floor, housekeeping pad or sub-base, ensuring that all isolators lines match the equipment mounting holes. The VMC group recommends that the isolator base (A) be installed on a level surface. Shim or grout as required, leveling all isolator bases to the same elevation (0.03125 of an inch maximum difference can be tolerated).
- 3. Bolt or anchor all isolators to supporting structure utilizing base thru holes (B).
- 4. Remove top bolt and top washer. Place equipment on top of isolators so that mounting holes in equipment or base line up with threaded hole (C).
- 5. Reinstall top bolt and washer and tighten down.

Elastomeric isolator specifications



Madel D/N	Dimension data (in.)									
Model P/N	L	W	HF	AL	AD	BT	CD	DW		
Type A 029-25335-001 (434002)	5.50 (139.7	3.38 (85.85)	2.88 (73.15)	4.13 (104.90)	0.56 (14.22)	0.25 (6.35)	1/2-13 UNC X 1 (M27 X 3)	2.50 (63.50)		
Type B 029-25335-002 (434004) Type B 029-25335-004 (434005)	6.25 (158.75)	4.63 (117.6)	2.75 (69.85)	5.00 (127.00)	0.56 (14.22)	0.38 (9.65)	1/2-13 UNC X 1 (M27 X 3)	3.00 (76.20)		

Model P/N	Isolator color	Weight range (lb)	Weight range (kg)
029-25335-001 (434002)	Charcoal	Up to 825	Up to 374
029-25335-002 (434004)	Brick red	826–1688	375–766
029-25335-004 (434005)	Charcoal	1689–4000	767–1814

Form 201.28-NM1.1 Issue date: 08/06/2021

One inch deflection isolator installation

Read the following instructions before beginning installation.

- 1. Isolators are shipped fully assembled and are to be positioned in accordance with the submittal drawings or as otherwise recommended.
- 2. Set isolators on floor, housekeeping pad or sub-base, ensuring that all isolators centerlines match the equipment mounting holes. The VMC group recommends that the isolator base ("B") be installed on a level surface. Shim or grout as required, leveling all isolator bases to the same elevation (0.25 in. maximum difference can be tolerated).
- 3. Bolt or anchor all isolators to supporting structure utilizing base slotted holes ("C").

- 4. Place equipment on top of isolators making sure that mounting holes of the equipment line up with isolator positioning pin ("H").
- 5. Equipment or machine is at its full operating weight.
- 6. Adjust each isolator in sequence by turning spring adjusting bolt ("D") one full counterclockwise turn at a time. Repeat this procedure on all isolators, one at a time.
- 7. Continue adjusting each isolator until a minimum of 0.25 in. clearance is achieved between the lower housing and upper housing. See illustration above.
- 8. Fine adjust isolators to level equipment.

One inch deflection spring isolator specifications

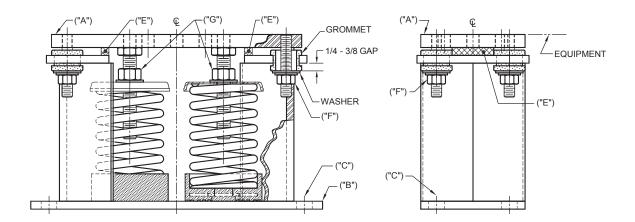
Moun		Dimension data (in.)								
type	w	D	L	В	С	Т	Н			
Type A	. 3	5/8	7 3/4	6 1/2	4-3/4	1/2	5 5/8			
Type E	3	5/8	10 1/2	9 1/4	7 3/4	9/16	6			

Type A model P/N	Color code	Rated capacity (for units with all load points less than 1785 lb [810 kg])					
.ype/timedett/it	30.0. 3343	(lb)	(kg)	Part number			
029-25334-002 (433668)	Black	Up to 434	Up to 197	029-25334-002			
029-25334-003 (433669)	Dark green	435–765	198–347	029-25334-003			
029-25334-004 (433670)	Gray	766–1020	348–463	029-25334-004			
029-25334-005 (433871)	White	1021–1156	464–524	029-25334-005			
029-25334-006 (433872)	Gray/Red	1157–1785	525–810	029-25334-006			

Type B model P/N	Color code	Rated capacity (for units with any load point above 1518 lb [689 kg])						
, yee 2 meder in	33.0. 33.00	(lb)	(kg)	Part number				
029-25334-008 (433997)	Dark purple	Up to 1148	Up to 521	029-25334-008				
029-25334-009 (433998)	Dark green	1149–1530	522–694	029-25334-009				
029-25334-010 (433999)	Gray	1531–2040	695–925	029-25334-010				
029-25334-012 (434000)	White	2041–2312	926–1049	029-25334-012				
029-25334-013 (434001)	Gray/Red	2313–3570	1050–1619	029-25334-013				

Notes:

- 1. Use either all CP's or all CP2's at all locations on a unit.
- 2. Installation requires bolting or anchoring mount to support structure with a 2×0.625 in. diameter bolts or 2×0.5 in. diameter concrete anchors.

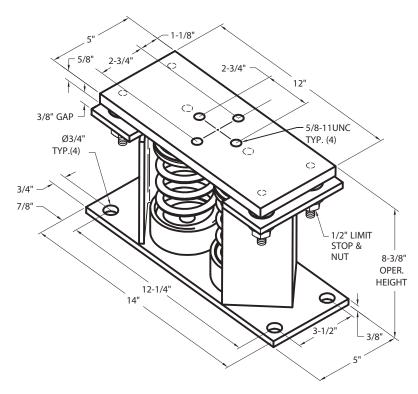

^{3.} All springs are designed for 50% over-travel.

SECTION 5 - TECHNICAL DATA

Form 201.28-NM1.1

Issue date: 08/06/2021

Two inch deflection, isolator installation and adjustment



Read the following instructions before beginning installation.

- Isolators are shipped fully assembled and are to be positioned in accordance with the submittal drawings or as otherwise recommended.
- 2. Set isolators on floor, housekeeping pad, or sub-base, ensuring that all isolator centerlines match the equipment mounting holes. The VMC group recommends that the isolator base plates ("B") be installed on a level surface. Shim or grout as required, levelling all isolator base plates to the same elevation (0.25 of an inch maximum difference can be tolerated).
- 3. Bolt or anchor all isolators to supporting structure utilizing base plate through holes ("C") or weld base plate to supporting structure with 0.375 in. fillet weld 2 in. long @ 4 in. on center around entire base plate or as engineered for specific load and or field conditions.
- 4. Isolators are shipped to the job site with (2) removable spacer shims ("E") between the top plate and the housing. These shims must be in place when the equipment is positioned over the isolators.
- 5. With all shims ("E") in place, position equipment on top of plate ("A") of isolator.

- 6. Bolt equipment securely to top plate of isolator using a minimum of 2 x 0.625 in. UNC A325 GRADE 5 SAE bolts or weld equipment or bracket to the top plate ("A") of isolator with a minimum 0.375 in. fillet welds 2 in. long @ 3 in. O.C. for a minimum total weld of 10 in. (All sides of equipment or bracket resting on top plate ("A") must be welded).
- The adjustment process can only begin after the equipment or machine is at its full operating weight.
- 8. Back off each of the 4 limit stop lock nuts ("F") on the isolators 0.5 in.
- 9. Adjust each isolator in sequence by turning spring adjusting nuts ("G") one full clockwise turn at a time. Repeat this procedure on all isolators, one at a time. Check the limit stop lock nuts ("F") periodically to ensure that clearance between the washer and rubber grommet is maintained. Stop adjustment of isolator only when the top plate ("A") has risen just above the shim ("E").
- 10. Remove all spacer shims ("E").
- 11. Fine adjust isolators to level equipment.
- 12. Adjust all limit stop lock nuts ("F") per isolator, maintaining 0.25 in. to 0.375 in. gap. The limit stop nuts must be kept at this gap to ensure uniform bolt loading during uplift, as is the case when the equipment is drained.

Two inch deflection, restrained spring isolator specifications

* Weight range (lb)	* Weight range (kg)	Model P/N	Color
Up to 391	Up to 177	029-25336-006 (688690)	Green
392–604	178–274	029-25336-008 (688691)	Dark brown
605–740	275–336	029-25336-009 (688692)	Red
741–1020	337–463	029-25336-010 (688693)	Red/Black
1021–1437	464–652	029-25336-011 (688694)	Pink
1438–2244	653–1018	029-25336-012 (688695)	Pink/Gray
2245–2618	1019–1188	029-25336-013 (688697)	Pink/Gray/Orange
2619–3740	1189–1696	029-25336-014 (688698)	Pink/Gray/Dark brown

^{*} Value is de-rated by 15%

Notes:

- 1. All dimensions are in inches, interpret as per ANSI Y14.
- 2. Equipment must be bolted or welded to the top plate to meet allowable seismic ratings.
- 3. All springs are designed for 50% overload capacity with exception of the 029-25336-013 and 029-25336-014.
- 4. Consult JCI for concrete installation.

FORM 201.28-NM1.1 ISSUE DATE: 12/18/2020

THIS PAGE IS INTENTIONALLY LEFT BLANK

Section 6 - Commissioning

Preparation

Commissioning of this unit must only be carried out by Johnson Controls Authorized personnel.

Commissioning personnel should be thoroughly familiar with the information contained in this document before starting the unit.

The following basic checks should be made with the customer power to the unit switched OFF.

Proper electrical lock out and tag out procedures must be followed.

Inspection

Inspect unit for installation damage. If found, take action and/or repair as appropriate.

Refrigerant charge

Packaged units are normally shipped as standard with a full refrigerant operating charge. Check that refrigerant pressure is present in both systems and that no leaks are apparent. If no pressure is present, a leak test must be undertaken, the leaks located and repaired.

Do not evacuate or liquid charge with static water in the evaporator. Turn the pump on. Take care to liquid charge slowly to avoid excessive thermal stress at the charging point and to ensure the refrigerant temperature in the evaporator does not go below the freezing point with liquid refrigerant in the evaporator. Once the vacuum is broken, charge into the evaporator or flash tank with the Condenser Drain Valve (Flash Tank Feed) open and the chilled liquid pump ON to the full operating charge, as detailed in SECTION 5 - TECHNICAL DATA.

Correct system refrigerant charge

The charge on a system should always be checked when operating for several minutes at full speed with the system stable. Stable conditions are defined as operation without fan cycling, economizer cycling, VI solenoid cycling, or any other system transient conditions. Ideal refrigerant charge will be reached when the refrigerant level in the evaporator is near the middle of the evaporator sight glass.

Refrigerant must not be added or removed unless the level is at the bottom or the top of the glass. It is not necessary to weigh charge unless the entire charge has been lost. The ease of charging is possible since the microchannel coils hold only a small amount of refrigerant charge. A charging valve is located between the fixed orifice and the evaporator for adjusting charge. Charge must be added as liquid with the pump ON and liquid flowing through the evaporator.

Service and oil line valves

Open each compressor oil, economizer, and discharge ball or service valves. If valves are of the back-seat type, open them fully (counterclockwise) then close one turn of the stem to ensure operating pressure is fed to pressure transducers.

Compressor oil

To add oil to a circuit - connect a YORK hand oil pump (Part No. 470-10654-000) to the 1/4 in. (6.35 mm) oil charging valve on the oil separator piping with a length of clean hose or copper line, but do not tighten the flare nut. Using clean oil of the correct type ("L" oil), pump oil until all air has been purged from the hose then tighten the nut. Stroke the oil pump to add oil to the oil system. While the compressor is running at full speed, the oil level should be visible in the sight glass of the oil separator. Approximately 2 gal to 3.1 gal (7.5 L to 11.6 L) are present in each refrigerant system.

Avoid levels in either oil separator that are above the middle of the top sight glass. This may cause excessive oil carryover in the system.

97

SECTION 6 - COMMISSIONING Form 201.28-NM1.1

Issue date: 08/06/2021

High oil concentration in the system may cause nuisance trips resulting from incorrect readings on the level sensor and temperature sensors. Temperature sensor errors may result in poor liquid control which will result in liquid overfeed and subsequently damage the compressor. High oil carryover may also cause liquid to be returned to the compressor, which can damage the compressor.

If condenser fans are manually operated in VFD mode, manually turn on all 4 fan digital outputs before enabling fan control voltage output. Damage to a fan contactor or fan VFD may occur if this instruction is not followed.

Fans

Check that all fans are free to rotate and are not damaged. Ensure blades are at the same height when rotated. Ensure fan guards are securely fixed.

Isolation/Protection

Verify all sources of electrical supply to the unit are taken from a single point of isolation. Check that the maximum recommended fuse sizes given in SECTION 5 - TECHNICAL DATA has not been exceeded.

Control panel

Check the panel to see that it is free of foreign materials (wire, metal chips, and so on) and clean out if required.

Power connections

Check that the customer power cables are connected correctly to the terminal blocks or optional circuit breaker. Ensure that connections of power cables within the panels to the circuit breaker or terminal blocks are tight.

Grounding

Verify that the unit's protective ground terminals are properly connected to a suitable grounding point. Ensure that all unit internal ground connections are tight.

Water system

Verify the chilled liquid system has been installed correctly, and has been commissioned with the correct direction of water flow through the evaporator. The inlet should be at the bottom connection on a two pass evaporator. Purge air from the top of the evaporator using the plugged air vent mounted on the top of the evaporator body.

Flow rates and pressure drops must be within the limits given in *SECTION 5 - TECHNICAL DATA*. Operation outside of these limits is undesirable and could cause damage. If main power must be switched OFF for maintenance or shutdown, precautions must be taken.

See Unit Maintenance and Shutdown in Sub-freezing Conditions on Page 101. Before placing the unit back in service, valves should be opened and power must be switched on (if power is removed for more than 8 hours) for at least 8 hours (24 hours if ambient temperature is below 86°F [30°C]) before the unit is restarted.

Flow switch

Verify a chilled water flow switch is correctly fitted in the customer's piping on the evaporator outlet, and wired into the control panel correctly using shielded cable.

There should be a straight run of at least five pipe diameters on either side of the flow switch. The flow switch should be connected to Terminals 2 and 13 in the panel.

Display elements and operation buttons

LED in green indicates the current flow level. LED 0 to LED 9 represent the range between no flow and maximum flow.

A lighting LED indicates the position of the switch point. Orange represents a closed output and red represents an open output. The switch point of LED 7 is a factory setting, but it can be adjusted per the conditions in the field.

To adjust or configure the flow switch, use the two LED indicator buttons, as shown on the following image.

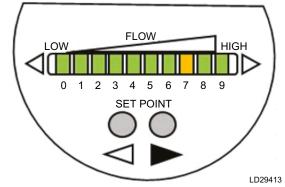


Figure 22 - LED indicator buttons

Setting the thermal dispersion flow switch

To set up the flow switch, perform a high-flow adjustment, which is a quick reaction with falling low.

- 1. Make sure that the normal flow circulates through the evaporator.
- 2. Switch on the power supply of the control.
- 3. Turn on and turn off all LEDs step by step. Make sure that the output is closed and the unit is in operation mode during this process.
- 4. Press and hold the ▶ push button until LED 9 turns on.

The flow switch is adapted to the flow conditions of the unit.

When the flow switch is set up, the LED indicates light as follows:

- LED 0, LED 1, LED 2, LED 3, LED 4, LED 5, LED 6, LED 8, and LED 9: green
- LED 7: orange

Figure 23 - Flow switch set

When the normal flow is below the representation range of the display, the LED displays in a similar way to the following example:

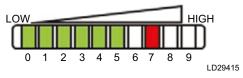


Figure 24 - Flow below the representation range

When the normal flow exceeds the representation range of the display, the LED displays the following:

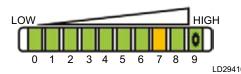


Figure 25 - Flow exceeds the representation range

Temperature sensors

Ensure that the leaving liquid temperature sensor is coated with heat conductive compound (Part No. 013-00890-000) and is inserted to the bottom of the water outlet sensor well in the evaporator. This sensor is part of the pump control freeze protection operation. It provides some freeze protection and must always be fully inserted in the water outlet sensor well.

Programmed options

Verify that the options factory-programmed into the Micro Panel are in accordance with the customer's order requirements by pressing the OPTIONS key on the keypad and reading the settings from the display.

Programmed settings

Ensure the system cutout and operational settings are in accordance with the operating requirements by pressing the PROGRAM key.

Date and time

Program the date and time by first ensuring that the CLK jumper JP2 on the Chiller Control Board is in the ON position. Then press the DATE/TIME key and set the date and time (see *Date/Time and Schedule Keys on Page 157*).

Start/Stop schedule

Program the daily and holiday start/stop by pressing the SCHEDULE key (see *Date/Time and Schedule Keys on Page 157*).

Setpoint and remote offset

Set the required leaving chilled liquid temperature setpoint and Control Range under the SETPOINTS key. The chilled liquid temperature control settings need to be set according to the required operating conditions.

If remote temperature reset (offset) is to be used, the maximum reset required must be programmed by pressing the SETPOINTS key (see *Setpoints Key on Page 149*).

SECTION 6 - COMMISSIONING Form 201.28-NM1.1

Issue date: 08/06/2021

First time startup

During the commissioning period there should be sufficient heat load to run the unit under stable full load operation to enable the unit controls, and system operation to be set up correctly, and a commissioning log taken.

Interlocks

Verify that liquid is flowing through the evaporator and that heat load is present. Ensure that any remote run interlocks are in the run position and that the Daily Schedule requires the unit to run or is overridden.

Unit switch

Place the UNIT switch on the keypad to the ON position.

Startup

Press the SYSTEM SWITCHES key and place the system switch for System 1 to the ON position. There may be a few seconds delay before the first compressor starts because of the anti-recycle timer. Be ready when each compressor starts, to switch the UNIT switch OFF immediately if any unusual noises or other adverse conditions develop.

When a compressor is running, the controller monitors oil pressure, motor current, and various other system parameters such as discharge pressure, chilled liquid temperature, and so on. Should any problems occur; the control system will immediately take appropriate action and display the nature of the fault.

Oil pressure

When a compressor starts, press the relevant "System Pressures" key and verify that oil differential pressure (oil pressure-suction pressure) develops immediately. If oil pressure does not develop, the automatic controls will shut down the compressor. Under no circumstances should a restart attempt be made on a compressor, which does not develop oil pressure immediately. Switch the UNIT switch to the OFF position.

Loading

Once the unit has been started, all operations are fully automatic. After an initial period at minimum capacity, the control system will adjust the unit load depending on the chilled liquid temperature and rate of temperature change. If a high heat load is present, the controller will increase the speed of the compressors.

Condenser and fan rotation

Once a compressor is running, discharge pressure rises as refrigerant is pumped into the air-cooled condenser coils. This pressure is controlled by stages of fans to ensure maximum unit efficiency while maintaining sufficient pressure for correct operation of the condensers and the lubrication system.

As discharge pressure rises, the condenser fans operate in stages or ramp up in speed to control the pressure. Verify that the fans operate in the correct direction of rotation and operation is correct for the type of unit.

System charge

Check system charge at steady full compressor load only. It is important that all fans are running for the system. The refrigerant level in the evaporator should be about in the middle of the sight glass. Unless levels are at the bottom or the top of the sight glass, they should not cause concern or require adding or removing charge.

General operation

After completion of the above checks for System 1, switch OFF the SYS 1 switch on the keypad and repeat the process for each subsequent system. When all run correctly, stop the unit, switch all applicable switches to the 'ON' position, and restart the unit.

Ensure all checks are completed in the Equipment Pre - Startup and Startup Checklist. The chiller is then ready to be placed into operation.

Freeze damage protection

Failure to follow the required freeze protection protocols can void the factory warranty.

If the YVAA is exposed to subfreezing ambient temperatures at any time during its life, it is critical to protect against evaporator freeze damage. The YVAA chiller can be equipped with features to prevent freeze damage to the evaporator. These features require continuous power to the chiller control panel, chilled fluid circuit pumps and evaporator heaters to prevent damage from freezing. If continuous power cannot be guaranteed or chilled fluid flow cannot be provided during periods of subfreezing ambient temperatures, then one of the following freeze protection protocols must be followed:

A. An appropriate freeze protection fluid selected for the lowest possible ambient temperature must be used in the chilled fluid circuit.

-or-

- B. The fluid in the evaporator must be drained by completing the following steps:
- Remove the power to the water box heaters
- Close the chilled fluid circuit isolation valves
- Drain the evaporator
- Leave the evaporator drain valves open

In applications where a freeze protection fluid is not used but continuous power to the chiller control panel, chilled fluid circuit pumps and evaporator heaters can be guaranteed during periods of subfreezing ambient temperatures, then one of the freeze damage protection protocols in the following table must be followed:

Table 11 - YVAA freeze damage protection requirements

		Actuated suction service isolation valve	Water box immersion heaters
Ambient air temperatures from 32°F (0°C) down to 0°F (-17.8°C)	service isolation valve is not	Required if chilled fluid pumps are not controlled by chiller control panel	Not required
Ambient air temperatures below 0°F (-17.8°C) down to -20°F (-28°C)		Required	Required

FORM 201.28-NM1.1 ISSUE DATE: 12/18/2020

THIS PAGE IS INTENTIONALLY LEFT BLANK

Section 7 - Operation

Operating controls

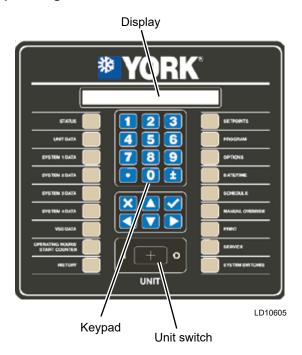


Figure 26 - Keyboard and display

Unit switch

A double pole single throw ON/OFF rocker switch on the front of the control panel is used to turn the entire chiller ON and OFF. When the switch is placed in the OFF position, the entire unit shuts down immediately and all systems will be disabled. One pole of the UNIT switch contacts is wired to the Run Signal input and the Chiller Control Board "UNIT switch X" digital input (X equals System 1 or 2). Separate System Fuses are also wired in series with each set of UNIT switch contacts. If either fuse is pulled or blown, only the system with the good fuse (Input is high) will run. When both inputs are high, the entire chiller will be enabled to run. When both inputs are low, the chiller will be disabled as a UNIT switch OFF Shutdown.

Keypad

An operator keypad allows complete control of the system from a central location. The keypad offers a multitude of command keys on the left and right side of the keypad to access displays, program setpoints, history data, and initiate system commands. Most keys have multiple displays that can be accessed by repetitively pressing the key or by pressing the \blacktriangle , \blacktriangledown , \blacktriangleleft , and \blacktriangleright (ARROW) keys. The keypad utilizes an overlay to convert the keypad to various languages.

The keypad also contains keys in the center section for data entry in the various program modes. These keys are as follows:

- 0-9 Keys NUMERIC KEYPAD
- PERIOD/DECIMAL
- +/-PLUS/MINUS
- ✓ ENTER
- X CANCEL
- ▲ UP ARROW
- ▼ DOWN ARROW
- ◀ LEFT ARROW
- ► RIGHT ARROW

The numeric keys allow keying numeric values into memory.

The • (PERIOD/DECIMAL) key allows keying a decimal point into numeric values.

The +/- (PLUS/MINUS) key allows making numeric values negative.

The \checkmark (ENTER) key stores program changes into memory.

The X (CANCEL) key is used to cancel the data entry operation and returns the programmed value to the original value, before any programming changes were made, when an error is made.

The \blacktriangle (UP ARROW) and \blacktriangledown (DOWN ARROW) keys allow scrolling backward (\blacktriangle) and forward (\blacktriangledown) through items to be programmed under keys such as the PROGRAM or OPTIONS key.

The \blacktriangle (UP ARROW) and \blacktriangledown (DOWN ARROW) keys also allow scrolling forward (\blacktriangledown) or backwards (\blacktriangle) through data display keys that have multiple displays under keys such as UNIT DATA, SYSTEM DATA, HISTORY, PROGRAM, OPTIONS, and so on. The arrow keys can be used instead of repeatedly pressing the data key to see the multiple displays under a key. Once the \blacktriangle \blacktriangledown (ARROW) keys are pressed and used for scrolling, pressing the original data key will return to the first display message displayed under the data (UNIT DATA, SYSTEM DATA, and so on) keys.

The **◆** ► (LEFT and RIGHT ARROW) keys allow scrolling between non-numeric program choices under the OPTION, DATE/TIME, and SCHEDULE keys.

SECTION 7 - OPERATION Form 201.28-NM1.1
Issue date: 08/06/2021

The ◀ (LEFT ARROW) key allows programming the default value when programming numeric values. For changing numeric values, the ► (RIGHT ARROW) key has no function.

The ◀ ► (ARROW) keys also allow scrolling sideways between the same displays on different systems. For example, pressing the ► (RIGHT ARROW) key while viewing the system #1 suction pressure moves the display to system #2 suction pressure.

Pressing the ◀ (LEFT ARROW) key moves the opposite direction. The arrow keys also allow fast scrolling through data under keys such as HISTORY by enabling the operator to move between subgroups of data such as Unit, System, and VSD data.

Keypad data entry mode

For numeric programmable items, the data entry mode is entered by pressing any of the number keys, the decimal point key, or the +/- key. When the data entry mode is entered, the data from the key press will be entered and the cursor will appear under the position where the data is being entered.

For non-numeric programmable items, data entry mode is entered by pressing the ◀ or ▶ (ARROW) keys. When the data entry mode is entered, the cursor will appear under the first position of the non-numeric string. The programmable choice may be changed by pressing the ◀ or ▶ (ARROW) keys.

To exit the data entry mode and store the programmed value, the \checkmark (ENTER) key must be pressed. When the \checkmark (ENTER) key is pressed, the cursor will disappear.

The data entry mode may also be exited by pressing the X (CANCEL) key. The programmed data will be returned to its original value when the X (CANCEL) key is pressed.

When the data entry mode is exited, the cursor will disappear. If any other key is pressed while in the Data Entry Mode, the following display will appear for 2 seconds indicating the user must choose between accepting or canceling the change:

XXXXXXXXXX PRESS ✓ TO ACCEPT VALUE OR X TO CANCEL DATA ENTRY

If the \checkmark (ENTER) key was pressed from the data entry mode and the numeric value entered was out of range, the following message will appear for 2 seconds followed by the original data display.

XXXXXXXXXX OUT OF RANGE TRY AGAIN! XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Display

The 80 character (2 lines of 40 characters per line) display is a Liquid Crystal Display (LCD) used for displaying unit parameters, system parameters, and operator messages. The display has an LED backlight background for night viewing and is viewable in direct sunlight.

Anti-recycle timer

On power-up of the control panel, the anti-recycle timer for each system will be set to 120 seconds and must time out before a compressor is allowed to start.

Whenever a system starts, the anti-recycle timer for all systems will be set to 120 seconds and will count down from the time the motor starts. The timer must time out before another compressor is allowed to start.

Whenever a system shuts down, the anti-recycle timer for that system will be set to 120 seconds. The timer must time out before the system is allowed to restart.

Evaporator pump control

The evaporator pump dry contacts are energized when any of the following conditions are true:

- If a Low Leaving Chilled Liquid Fault occurs.
- Whenever a compressor is running.
- The Daily Schedule is ON and the UNIT switch is ON.

Even if one of above is true, the pump will not run if the panel has been powered up for less than 30 seconds or if the pump has run in the last 30 seconds to prevent pump motor overheating.

Evaporator heater control

The evaporator heater and suction valve actuator are both controlled by ambient air temperature when the system is idle. If no systems are running and the ambient temperature drops below 4.4°C (40°F), the heater is turned ON and the suction valve is closed. If no systems are running and the temperature rises above 7.2°C (45°F), the heater is turned OFF and the suction opened. Whenever a system is running, the evaporator heater is turned OFF and the suction will be open. Both evaporator heater outputs will always be tuned ON and OFF together. An under voltage condition will keep the heater OFF until full voltage is restored to the system.

Chiller controller cannot detect the failure of all the heaters used in compressor, oil separator, evaporator shell and evaporator water box, etc. with the chilled water pump running and with the evaporator heaters well maintained are extremely crucial especially in subfreezing regions. Chilled water pump control contains the logic of preventative of evaporator freezing.

Compressor heater control

Each compressor has its own heater. The purpose of the heater is to ensure refrigerant does not condense in the compressor. There is no oil sump, but refrigerant could possibly condense in the rotors or the motor housing. The heater will be OFF whenever the respective compressor is running. As soon as the compressor shuts OFF, the heater will turn ON as long as all motor temperature sensors in the compressor read less than 70°C (158°F). The heater will turn OFF, if any internal compressor motor temperature sensor reads more than 71.1°C (160°F).

Alarms

Each system has its own alarm. The Alarm output is ON (dry contact closed) when no fault condition is present and OFF (dry contact open) to indicate an alarm situation. The Alarm will be activated (contacts open), if any of the following are true.

- A System is faulted or inhibited from starting for more than 5 seconds.
- The Unit is faulted or inhibited from starting for more than 5 seconds.
- · A System is locked out.
- The Unit is locked out.
- Power is removed from the chiller.

Chiller run contact

The Chiller Run dry contact is closed whenever any system is running. It is open when all systems are shut OFF.

Flow switch control

A chilled liquid flow switch of suitable type MUST be connected between Terminals 2 and 13 of 1TB to provide protection against loss of liquid flow, which will cause evaporator freeze-up if the chiller is permitted to run.

Changing the switch point of the thermal dispersion flow switch

To change the factory-set LED 7, complete the following steps:

- 1. Press the ◀ or ▶ push button. The switch point LED flashes.
- 2. Press the ◀ or ▶ push button as many times as required in less than 2 seconds between each press. Each press of the push button shifts the LED by one position in the indicated direction.
- 3. Stop pressing the button when the switch position LED changes to the required position. The flow switch automatically returns to the operating mode with the new setting in 2 seconds.
- 4. To prevent unintentional settings, press both push buttons simultaneously for at least 10 seconds in operating mode to lock the switch electronically. To unlock the flow switch, perform the same operation again. The setting remains the same in case of power failure.

Remote run/stop

A Remote Run/Stop input is available for each system.

Basic operating sequence

Start sequence and loading

To initiate the start sequence of the chiller, the following conditions must be satisfied before the precharge of the DC Bus will take place:

- UNIT SWITCH must be ON.
- At least one System Switch is ON.
- Run permissive inputs (Remote Cycling Contacts) must be closed.
- · No unit faults exist.
- No unit start inhibits exist.
- At least one system not faulted or inhibited.
- The Daily Schedule is calling for the chiller to run.
- The Flow Switch is closed.
- Leaving Chilled Liquid Setpoint is above the Setpoint plus CR (Setpoint High Limit).

Once the precharge takes place, if the anti-recycle timer is timed out the chiller control system on the Chiller Control Board will select the number of compres-

SECTION 7 - OPERATION Form 201.28-NM1.1
Issue date: 08/06/2021

sors to start and begin operation of the compressors. The compressors speed will be ramped to the minimum start frequency and increase speed as needed in an effort to regulate the leaving chilled liquid temperature to meet the desired Setpoint. Unit Warnings

Unit warning

Unit warning operation

Unit warnings are caused when a condition is present requiring operator intervention to restart the unit. All setpoints, program values, and options should be checked before operating the unit. Warnings are not logged to the history buffer. If a unit warning is in effect, the message will be displayed to the operator when the STATUS key is pressed.

Low battery warning

The LOW BATTERY WARNING can only occur at unit power-up. On micropanel power-up, the RTC battery is checked to see if it is still operational. If it is, normal unit operation is allowed. If the battery voltage is determined to be low, the following warning message is displayed indefinitely.

UNIT WARNING: !! LOW BATTERY !! CHECK SETPOINTS/PROGRAM/OPTIONS/TIME

If a low battery condition exists, all programmed setpoints, program values, time, schedule, and history buffers will have been lost. These values will all be reset to their default values, which may not be the desired operating values. Once a bad battery is detected, the unit will be prevented from running until the MANUAL OVERRIDE key is pressed. Once the MANUAL OVERRIDE key is pressed, the anti recycle timers will be set to the programmed default anti recycle time to allow the operator sufficient time to check setpoints, program values, and so on.

If a low battery is detected, it should be replaced as soon as possible. The programmed values will all be lost and the unit will be prevented from running on the next power interruption.

Microboard (331-03478-XXX)

The 331-03478-xxx microboard was developed as a direct replacement for the 031-02478-xxx line of microboards. No adapter harness is required when replacing a 02478 with the new 03478. The 03478 uses the IPUII processor card and provides some new features for the chillers that the 02478 did not have.

The 03478 program resides in flash memory instead of EPROM. Program updates are accomplished by loading the new program from an SD card inserted into the SD card reader/writer. This same SD card reader/writer also allows the user to datalog the operating parameters to an SD card every 5 seconds. This information is invaluable when troubleshooting unit and system problems since it allows the service technician to view operating parameters before a unit fault. Details on the new datalogging capability are explained in the OPTIONS Key area of this manual. A Real Time Clock/BRAM keeps time and setpoints during power outages.

See *Figure 18 on page 102* to locate the following ports of the 03478 microboard.

Power supplies and LEDs

The 03478 has LEDs to indicate various states of operation of the microboard.

STATUS – Flashes every 1/2 second to indicate that the base board processor is running its program.

POWER – On solid indicates that the base board +12 V and +5 V power supplies are operational.

TX1 – Red LED flashes when transmitting data out Port 1 TB3 (Future native communications BAS port).

RX1 – Green LED flashes when receiving data in Port 1 TB3 (Future native communications BAS port).

TX2 – Red LED that flashes when transmitting data out Port 2 (E-Link TB2 or printer TB1).

RX2 – Green LED that flashes when receiving data in Port 2 (E-Link TB2 or printer TB1).

VSD_TX – Red LED that flashes when transmitting data out Port 3 to the VSD Logic board.

VSD_RX – Green LED that flashes when receiving data in Port 3 from the VSD Logic board.

24 VAC power is applied to the 331-03478-xxx microboard connector J12 and is then used to create the various DC power sources required by the microboard circuitry. If the chiller control is malfunctioning, the power supply test points should be measured to determine the status of the microboard.

Power supply test points

TP1 GND (Measure TP2, TP3, TP4 and TP5 in reference to this Test Point).

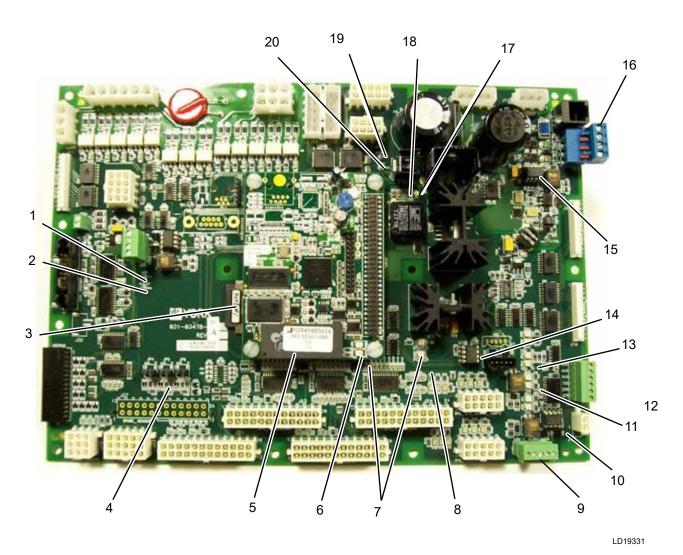
TP2 +3.3 V [3.2 VDC to 3.4 VDC] provides power to the processors.

TP3 +5 V [4.8 VDC to 5.2 VDC] power communication ports 2,3 and 4 and analog sensors.

TP4 +12 V [11.64 VDC to 12.36 VDC] powers the display and backlight and is regulated to become the +5 V.

TP5 +15 V [11.3 VDC to 16.6 VDC] powers the analog outputs to the EEV valves.

Configuration jumpers


The same configuration jumpers that existed on the 02478 are provided on the 03478.

JP4 Remote Temp Reset jumper position Pins 1 to 2 (left) = 4 mA to 20 mA, Pins 2 to 3 (right) = 0 VDC to 10 VDC.

JP5 Remote Current Limit jumper position Pins 1 to 2 (left) = 4 mA to 20 mA, Pins 2 to 3 (right) = 0 VDC to 10 VDC.

JP6 Remote Sound Limit jumper position (Pins 1 to 2 (left) = 4mA to 20 mA, Pins 2 to 3 (right) = 0 VDC to 10 VDC.

SECTION 7 - OPERATION Form 201.28-NM1.1 Issue date: 08/06/2021

Number Description Number Description Number Description Number Description Port 1 Port 2 Native BAS TP3 +5 V Power LED 11 16 1 6 (BACnet and RX2, TX2 N2) PORT 2 RS-232 TP2 +3.3 V Status LED 12 17 TP1 GND 7 2 Printer or Modbus VSD RX SD Card Power LED 13 TP4+12 V 3 8 18 VSD-TX Port 2 RS485 to JP4, JP5, JP6 E-Link/SC-EQ U18 VSD Remote Setpoint 14 19 TP5 + 15 V 4 9 or Modbus RS-485 Driver Jumpers (RTU) U23 Port 2 **U26 PORT 1** U5 RTC/BRAM 15 20 TP10 + 24 V 5 10 RS-485 Driver RS-485 Driver

Figure 27 - New 331-03478-xxx microboard

Building automation system (BAS) communications

There are three different ways the chiller communicates to the BAS.

- Using board Native Communication protocol
- Using an E-Link Gateway
- Using an SC-EQ Communication Card

Using communications protocol

TB3 Port 1 Native BAS RS-485.

SW1 RS-485 Biasing Switch for Port. Set to ON if chiller is in an End of Line position on the network.

U26 is the Port 1 RS-485 Driver Chip. It is socketed to allow field replacement. RX1 and TX1 LEDs illuminate to indicate Port 1 communications activity.

YVAA native communication setup

Native communication is applicable to three types of protocols, they are BACnet, N2 and Modbus (RTU). It requires IPU II Microboard (331-03478-101) and software version Y.ACS.20.02 or later.

BACnet MS/TP setup port 1 (TB3)

To set up the BACNET MS/TP Port 1, complete the following steps:

- 1. Connect the BACnet MS/TP Network to Port 1 on the IPU II I/O Board.
- 2. Set up the YVAA Port 1 (P1) for BACnet Communications as shown in *Figure 27 on page 108*.

To access the Port communication parameters:

- 1. Press the PROGRAM key once.
- 2. Enter password 5255.
- 3. Press the ✓(ENTER) key to display the Port 1 (P1) settings.

Set the following parameters:

- 1. DE Modifier Address (number entered is multiplied by 100): set as required by network.
- 2. DE Modifier Offset (number entered is added to DE Modifier Address): as required by network (see 8).
- 3. P1 Protocol: set to BACNET (Default Setting).
- 4. P1 Manual MAC Address: set to 1 (Default Setting).
- 5. P1 Baud rate: set as required by network. If not known set to AUTO.

- 6. P1 Parity: set to NONE (Default Setting).
- 7. P1 Stop Bits: set to 1 (Default Setting).

The BACnet DE Instance (Device Instance) is determined by adding the [DE MODIFIER AD-DRESS x 100] with the DE MODIFIER OFFSET. That is, if the desired DE Instance address is 5023, set the DE Modifier Address to 50, and then set the DE Modifier Offset to 23 (50 X 100 + 23 = 5023). DE Instances must be limited to values between 1 and 4,194,303 and every device in the network must have a unique Device Instance.

You must always cycle power to the microboard following port setting changes.

N2 Metasys setup port 1 (TB3)

- 1. Connect the N2 Network to Port 1 on the IPU II I/O Board as shown in *Figure 18 on page 104*.
- 2. Set up the YVAA Port 1 (P1) for N2 Communications.

To access the communication parameters:

- 1. Press the PROGRAM key once
- 2. Enter password 5255
- 3. Press ✓(ENTER) to display the Port 1 (P1) settings.

Set the following parameters:

- 1. DE Modifier Address: N/A
- 2. DE Modifier Offset: N/A
- 3. P1 Protocol: Set to N2
- 4. P1 Manual MAC Address: Set to 0-127 as required by the parameters set in the BAS network.
- 5. P1 Baud Rate: 9600
- 6. P1 Parity: None (Default Setting)
- 7. P1 Stop Bits1: (Default Setting)

109

SECTION 7 - OPERATION Form 201.28-NM1.1
Issue date: 08/06/2021

MODBUS (RTU) setup port 2

The YVAA 03478 microboard supports Modbus RS232 or RS485 communications for Port 2 communications. Port 2 communications can be directed to either TB1 for RS232 or TB2 for RS485.

To connect to the network:

- 1. Connect your Modbus Network to Port 2 on the IPU II I/O Board as shown in *Figure 18 on page 105*.
- 2. Set up the YVAA Port 2 (P2) for Modbus Communications.

To access the communication parameters:

- 1. Press the PROGRAM key once.
- 2. Enter the password 5255.
- 3. Press the ✓(ENTER) key to display the Port 1 (P1) settings.

Set the following parameters:

- 1. DE Modifier Address: Set to 1
- 2. DE Modifier Offset: Set to 0
- 3. P1 Protocol: Set to API
- 4. P2 Protocol: Set to Modbus Server
- 5. P2 Manual MAC Address: Set to 0-127 (as required by Modbus network)
- 6. P2 Baud rate: Set to 19.2K (or as required by the Modbus network)
- 7. P2 Parity: Set to NONE (or as required by Modbus network)
- 8. P2 Stop Bits: Set to 1
- 9. P2 Hw Select Bit: Set to RS-485 or RS-232 (as required by Modbus network)

Cycle power to the Microboard following port setups.

J13-5 Remote Stop Start must be closed for BAS remote commands to take effect. If this input is open the unit will shut down and the panel will display the message:

REMOTE STOP - NO RUN PERMISSIVE.

E-Link or SC-EQ interface

Communications to a LON network requires a LON E-Link and Port 2 set for YorkTalk 2. Connected Services requires a SC-EQ and Port 2 set for YorkTalk 2. To connect to the network:

- 1. Connect the E-Link or SC-EQ to Port 2 on the IPU II I/O Board as shown in *Figure 18 on page* 105
- 2. Set up the YVAA Port 2 (P2) for YorkTalk 2 Communications.

To access the communication parameters:

- 1. Press the PROGRAM key once.
- 2. Enter the password 5255.
- 3. Press the ✓(ENTER) key to display the Port 1 (P1) settings.

Set the following parameters:

- 1. DE Modifier Address: Set to -1
- 2. Chiller ID: 0

Reboot required (cycle power) after settings are changed.

The following table shows set-up requirements for each communication protocol.

Table 12 - Values required for BAS communication

Catting description		Protocol		
Setting description	BACnet MS/TP	Modbus RTU⁵	N2	YorkTalk2 ⁶
DE modifier address	0 to 41943 ⁽³⁾	1	N/A	-1
DE modifier offset	0 to 99 ⁽⁴⁾	0	N/A	N/A
P1 protocol	BACNET	N/A	N2	N/A
P1 manual mac address	0-127(1)	N/A	0-127(1)	N/A
P1 baud rate	9600 To 76800 or Auto Selectable ⁽¹⁾	N/A	9600 or 19200	N/A
P1 parity	NONE	N/A	NONE	N/A
P1 stop bits	1	N/A	1	N/A
P2 protocol	N/A	MODBUS SVR	N/A	N/A
P2 manual mac address	N/A	0-127(1)	N/A	N/A
P2 baud rate	N/A	19,200(2)	N/A	N/A
P2 parity	N/A	NONE ⁽²⁾	N/A	N/A
P2 stop bits	N/A	1	N/A	N/A
P2 HW select bit	N/A	RS-485 or RS-232 ⁽¹⁾	N/A	N/A
Reset real time error	N/A	N/A	N/A	N/A
Chiller ID	N/A	N/A	N/A	0

Notes:

- 1. As Required By Network.
- 2. Or Other As Required By Network.
- 3. Number Is Multiplied By 100, Set As Required By Network.
- 4. Number Is Added To DE Modifier Address, Set As Required By Network.
- 5. Unit Operating Software Version C.Mmc.13.03 Or Later Required For Modbus Protocol.
- 6. E-Link or SC-EQ interface requires YorkTalk2 setup.

SECTION 7 - OPERATION Form 201.28-NM1.1
Issue date: 08/06/2021

The following table shows the real time error numbers that may be encountered during communication setup and a description of each.

Table 13 - Real time error numbers for BAS, SC-EQ or E-Link communications card

Error number (##)	Description
0	ALL OK
1	DATUM TYPE OK TEST FAILED
2	ENGLISH TEXT TOO LONG
3	FLOATING POINT EXCEPTION
4	GET PACKET FAILED
5	GET TYPE FAILED
6	INVALID UNIT CONVERSION
7	INVALID HARDWARE SELECTION
8	REAL TIME FAULT
9	SPANISH TEXT TOO LONG
10	THREAD EXITED
11	THREAD FAILED
12	THREAD STALLED
13	IO BOARD RESET
14	RTC/BRAM INVALID
15	BACNET SETUP FAILED

This data can be read and in some cases modified using a BACnet, Modbus, or N2 network connection. The BACnet Name is a 12 character or shorter name used to identify the data in BACnet. The AI, AV, BI, and BV columns are indexes used to select the data.

The AI, AV, BI, and BV number associated with a BACnet Name should not be changed. If a value is not wanted in this table, change the BACnet Name to SPARE_XX_##. SPARE rows can be used for new values.

When set to BACnet or N2, communications automatically sets Stop Bit (1) and Parity (None) for port.

When connected using BAS and port is set for BACnet, Modbus, or N2, the remote settings will continue to follow the remote setpoints until the port is changed to another protocol or DE modifier address is set to -1.

The most current data map information is listed on the Johnson Controls/YORK Chiller Equipment Integration website. A copy of the data map can also be obtained by contacting a local Johnson Controls office.

Reboot required (cycle power) after settings are changed.

SC-EQ or E-Link BAS communications card

Received data (Control data)

The chiller receives eight data values from the SC-EQ or E-Link. The first four are analog values and the last four are digital values. These eight data values are used as control parameters when in REMOTE mode. When the unit is in LOCAL mode, these eight values are ignored. If the unit receives no valid YorkTalk 2 transmission for 5 minutes it will revert back to all local control values. *Table 13 on page 114* lists the control parameters.

Transmitted data

After receiving a valid transmission from the SC-EQ or E-Link, the chiller will transmit either operational data or history buffer data depending on the History Buffer Request, ENG PAGE 10, found in *Table 13 on page 114*. Data must be transmitted for every page. If there is no value to be sent to a particular page, a zero will be sent. *Table 13 on page 114* shows the data values and page listings for this unit.

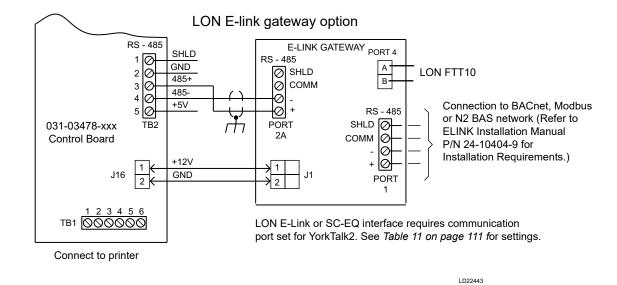


Figure 28 - LON E-Link gateway option

YVA.	YVAA, YVFA, YAGK						Native Mo	dbus RTU,	Native Modbus RTU, BACnet MS/TP, N2 Data Map	31-03478
Item			Version		γc	York P/N			omments	
-	Y.ACS.20.02				031-03476-010	0	New			
2	Y.ACS.20.04 - Y.ACS.20.05	CS.20.05			031-03476-010	0	Updated			
က	Y.ACS.20.06 - Y.ACS.20.10	CS.20.10			031-03476-010	0	Updated			
4	Y.ACS.20.12 - Y.ACS.20.14	CS.20.14			031-03476-010	0	Updated			
2	Y.ACS.20.15 - Y.ACS.20.17	CS.20.17			031-03476-010	0	Updated p	Jpdated points and codes	sepo	
9	Y.ACS.20.18				031-03476-010	0	Updated p	Updated points and codes	səpo	
٥ م										
0										
10										
Ref Num	BACnet Name	BACnet Object Instance	Modbus Address	Modbus Data Type Supported	Modbus Scaling (See Note 5)	N2 Metasys	Engineer Imperial	Engineering Units Imperial SI	Point List Code: S = Standard O = Optional N = Not Available Point List Description 1 2 3	4 5 6 7 8 9 10
ANAL	ANALOG WRITE POINTS	6								
-	REM_SETP	AV1	1026	03,06,16	Div 10	ADF 1	÷	၁့	Remote Setpoint (Start cmd must be active to take effect) S S S	SSS
0	DMD_LIMIT	AV2	1027	03,06,16	Div 10	ADF 2	% FLA	% FLA	Remote Current Limit Setpoint (Start cmd must be active S S S to take effect)	У У У
က	SND_LIMIT	AV3	1028	03,06,16	Div 10	ADF 3	%	%	Remote Sound Limit (RSL option must be enabled or point S S S ignored)	S S S
4	SPARE AV1	AV4	1029	03,06,16	Div 10	ADF 4	None	None	Spare N N N	 Z Z
BINA	BINARY WRITE POINTS							Ī		
2	START STOP	BV1	1538	01,03,05,06,15	Ψ/Z	BD 1	0/1		e Start / Stop Command [0=Stop, 1=Run]	S Z
9 ^	SPARE BV1	BV2	1539	01,03,05,06,15	Ψ/Z	BD 2	L/0	1/0	Spare N N N N N N N N N N N N N N N N N N N	Z Z Z Z Z Z Z
- 80	SPARE BV3	BV3	1541	01.03.05.06.15	₹×X	BD 3	0/1		Z Z Z	z
ANAL	ANALOG READ ONLY POINTS	OINTS								
6	LCHLT	AI1	514	03,04	×10	ADF 5	J.	၁့	Leaving Chilled Liquid Temperature	888
10	ECHLT	AI2	515	03,04	×10	ADF 6	٠Ł		Ħ	SSS
= 5	EV ELT	AI3	516	03,04	×10	ADF 7	<u>۴</u> ا	ပွ	Evaporator Entering Liquid Temperature (Free Cooling) O O O	0
13	S1 COND TEMP	AIS	518	03,04	× × ×	ADF 9	Ļ		0 00	0 0
14	S2 COND TEMP	AIG	519	03,04	×10	ADF 10	¥		S	S
15	S1_DSCH_TEMP	AI7	520	03,04	×10	ADF 11	J۰		8 8	S S
16	S2 DSCH TEMP	AI8	521	03,04	×10	ADF 12	ų,		ature S S	S
17	S1 FDT TEMP	AI10	522	03,04	× × 10	ADF 13	÷ h	ပ္ င့	Ambient Air Temperature S S S S S S S S S S S S S S S S S S S	S C S C
19	S2 EDT TEMP	Al11	524	03,04	×10	ADF 15	. Ļ		000	0
20	S1_OIL_PRESS	A112	525	03,04	×10	ADF 16	PSI		Sys 1 Oil Pressure	SSS
21	S2_OIL_PRESS	AI13	526	03,04	×10	ADF 17	PSI		8 8	S
22	S1 SUCT PRES	Al14	527	03,04	×10	ADF 18	PSI		ω α	S
SS	SZ SUCI PRES	Alls	228	03,04	0 K	ADF 19	P.S.	T	n c	n c
25	SZ DSCH PRES	AII6	530	03,04	× ×	ADF 20	PS S	BAR	Sys 2 Discharge Pressure Sys 2 Discharge Press	0 00
26	S1_MC_FLA	A118	531	03,04	×10	ADF 22	%			S
27	S2_MC_FLA	A119	532	03,04	×10	ADF 23	%		A S S	S
58	S1 OP HRS	AIZO	533	03,04	×	ADF 24	None		S	S
53	S2 OP HRS	AI21	534	03,04	∵ :	ADF 25	None		Sys 2 Operating Hours State	S
3	ST COMP ST	AIZZ	535	03,04	× 2	ADF 26	None	None	Sys 1 Compressor Starts Signature Starts Signature Starts Signature Starts Signature Starts S	S O
32	S1 HI MTR T	AI24	537	03,04	×10	ADF 28	P. F		perature S S S	o S

Property of Johnson Controls Subject to change without notice.

Table 14 - YVAA native communications data map (Cont'd)

ı	u	7	
٠	t	5	
٠		ı	

Address Supported Appress Ap	2	B ACrost Name	BACnet	Modbus	Modbus Data Type	Modbus	evectoM CN	Engineering Units	ng Units	Point List Code: S = Standard O = Optional N = Not Available	ole
ALRES SSS 0.0.9.4 at x10 ADP 29			Instance	Address	Supported	Scalling (See Note 5)	e de monado	Imperial	S	-	2 3 4 5 6 7 8 9 10
ALSS GO 64 X10 AMF 30 Hz Hz VSD Command Progenery S ALSS 549 GO 64 X10 AMF 31 Hz Hz VSD Command Progenery S S ALSS 542 GO 64 X10 AMF 31 Hz Hz NEW DATE Progener Command Progenery S S ALSS 543 GO 64 X10 AMF 31 Name None SS 92 Comminant Communication S S ALSS 544 GO 60 X1 AMF 32 Name None SS 92 Comminant Communication S S ALSS 545 GO 60 X1 AMF 32 Name None SS 92 Comminant Communication S S ALSS 546 GO 34 X1 AMF 33 Name None SS 92 Comminant Communication S S ALSS 546 GO 34 X1 AMF 33 None SS 92 Communication S S S ALSS 540	S2_HI_MT	MTR_T	AI25	538	03,04	×10	ADF 29	₽.	၁့	S	S S S S
AR29 54.0 00.04 X10 AMP 32 % % 59.1 Continued Teachers S. AR29 54.2 00.04 X10 AMP 32 % % 59.1 Continued Teachers S. AR30 54.2 00.04 X10 AMP 32 % % 59.1 Continued Teachers S. AR31 55.2 00.04 X1 AMP 34 Whom Notes Sys 1 Earth Code S. AR32 54.4 00.04 X1 AMP 34 Whom Notes Sys 1 Earth Code S. AR35 54.4 00.04 X1 AMP 34 Whom Notes Sys 1 Earth Code S. AR35 54.4 00.04 X1 AMP 39 None Notes Sys 1 Continued Teachers S. AR35 54.4 00.04 X1 AMP 39 None Notes Sys 1 Continued Teachers S. AR36 55.7 00.04 X1 AMP 39 None Notes Sys 1 Continued Teachers S. S. AR36 54.8 00.04 X1 AMP 30 None Sys	3D_0	UT_FR	AI26	539	03,04	×10	ADF 30	Hz	Hz	S	S S S S
AR29 \$411 03.944 x10 ADPE 32 % Sp. 8 Condenses Dana Valve % Copen \$ S S LOCATION COMMENS COPEN \$ S S LOCATION COMMENS COPEN \$ S S LOCATION CONTRIBUTION COPEN \$ S S LOCATION CONTRIBUTION COPEN \$ S S LOCATION COPEN	3D_C	MD_FR	AI27	540	03,04	×10	ADF 31	Hz	Hz	S	S S S S
A102 5442 03.04 x10 ADF 34 None None Syst Operational Code S A103 5442 03.04 x1 ADF 34 None None Syst 1 Candenser Em Stage (1-14) S A103 5444 03.04 x1 ADF 36 None None Syst 1 Candenser Em Stage (1-14) S S A103 545 03.04 x1 ADF 36 None None Syst 1 Candenser Em Stage (1-14) S S A103 545 03.04 x1 ADF 36 None Syst 1 Candenser Em Stage (1-14) S S A104 554 03.04 x1 ADF 36 None Syst 1 Candenser Em Stage (1-14) S S A105 550 03.04 x1 ADF 40 x8 S 51 Candenser Em Stage (1-14) S S A105 550 03.04 x1 ADF 41 x6 S 51 Candenser Em Stage (1-14) S S A106 550 03.04 x1	00_1	ND_DR	AI28	541	03,04	×10	ADF 32	%	%	S	88888
Add 8443 03.04 x1 ADF 36 None Sys 2 Conditionate Code S Ad3 6343 03.04 x1 ADF 36 None None Sys 2 Conditionate Code S Ad3 6345 03.04 x1 ADF 37 None None Sys 2 Conditionate Emit Stage (0-14) S Ad3 6345 03.04 x1 ADF 30 None Sys 2 Conditionate Emit Stage (0-14) S Ad3 6349 03.04 x1 ADF 30 None Sys 2 Conditionate Emit Stage (0-14) S Ad3 6350 03.04 x1 ADF 41 % % Sys 2 Conditionate Emit Stage (0-14) S Ad3 6350 03.04 x1 ADF 42 T C Lewing Child (14) S Ad4 6354 03.04 x1 ADF 43 T C Lewing Child (14) S Ad4 6357 03.04 x1 ADF 43 T C Lewing Child (14) S	S COI	ND_DR	AI29	542	03,04	×10	ADF 33	%	%	S	88888
A183 544 00.04 x1 ADF 35 Name Name Spe F Endl Code S S A183 546 00.04 x1 ADF 37 Name Name Spe F Endl Code S S A184 546 00.04 x1 ADF 37 Name Name Spe F Endl Code S S S Condenser Fan Speed (154) S S S S COND AN S S Condenser Fan Speed (150) O O O O O O AN S S Condenser Fan Speed (150) O	PP	CODE	AI30	543	03,04	×1	ADF 34	None	None	S	88888
AR32 545 030.04 x1 ADP 36 Name None Set Fain Code Set Set Set Fain Code Set Set Set Fain Code Set Set Set Set Set Set Set Set Set Set	S OP	CODE	AI31	544	03,04	x1	ADF 35	None	None	S	88888
Al38 546 00.04 x1 ADP 37 None None Spe I Conclusor Fan Stage (0.14) S S Al38 546 00.04 x1 ADP 30 None None Spe I Conclusor Fan Stage (0.14) S S Al39 556 00.04 x1 ADP 41 % % Spe I Conclusor Fan Speed (9.51) O S Al39 556 00.04 x1 ADP 41 % % Spe I Conclusor Fan Speed (9.51) O S Al39 556 00.04 x1 ADP 41 % Spe I Conclusor Fan Speed (9.51) O S Al40 556 00.04 x10 ADP 42 % Spe I Conclusor Fan Speed (9.51) O S Al40 556 00.04 x10 ADP 43 % Spe I Conclusor Fan Speed (9.51) O S Al41 556 00.04 x10 ADP 43 % Spe I Conclusor Fan Speed (9.51) O S Al42 556 00.04 x1 ADP 43 % Spe I Conclusor Fan Fan Speed (9.51) <	I_FTL	CODE	AI32	545	03,04	x1	ADF 36	None	None	S	88888
A154 547 C0204 XT AAPF 30 None None Syst Condenser Fin Stage (1/50) S S A156 549 0.004 XT AAPF 40 % % Syst Condenser Fin Stage (1/50) O O O A159 554 0.004 XT AAPF 42 % Syst Condenser Fin Stage (1/50) O <t< td=""><td>ELT.</td><td>CODE</td><td>AI33</td><td>546</td><td>03,04</td><td>x1</td><td>ADF 37</td><td>None</td><td>None</td><td>S</td><td>88888</td></t<>	ELT.	CODE	AI33	546	03,04	x1	ADF 37	None	None	S	88888
A155 548 C0304 XT ADF 33 None None <th< td=""><td>FAN</td><td>STG</td><td>AI34</td><td>547</td><td>03,04</td><td>x1</td><td>ADF 38</td><td>None</td><td>None</td><td>S</td><td></td></th<>	FAN	STG	AI34	547	03,04	x1	ADF 38	None	None	S	
A159 559 C0304 X1 AAPF 40 % % % Sys 2 Condenser Frospeci (VSD) O A189 5591 C0304 X1 AAPF 42 % % % Sys 2 Condenser Frospeci (VSD) O O A189 5551 C0304 X1 AAPF 42 % % Sys 2 Condenser Frospeci (VSD) O O A440 5552 C0304 X10 AAPF 43 % % Sys 2 Condenser Frospeci (VSD) O S A442 5553 C0304 X10 AAPF 43 % % Sys 2 Condenser Frospeci (VSD) S S A443 556 C0304 X10 AAPF 43 % % Sys 2 Condenser Frospeci (VSD) S S A444 557 C0304 X1 AAPF 43 Volis Volis Volis Volis Volis S S C O O O O O O O O O O	-FAN	I_STG	AI35	548	03,04	x1	ADF 39	None	None	S	88888
A189 550 03.04 x1 ADF 41 %	FAN_	I_SPD	AI36	549	03,04	x1	ADF 40	%	%	0	
AGR SE51 030.04 X11 ADF 42 YF YO Leaving Chillied Uquid Sepoint SE SE Control ADF 44 YF YO Leaving Chillied Uquid Sepoint SE SE Control SE SE SE SE SE SE SE S	FAN	SPD	AI37	220	03,04	x1	ADF 41	%	%	0	0 0
A439 5552 0.3.04 x/10 ADF 43 °F °C Leaving Chilled Liquid Sepoint § S A441 554 0.3.04 x/10 ADF 46 °° % Sys I Economized Value % Open § S A442 555 0.3.04 x/10 ADF 46 °° % Sys I Economized Value % Open § S A443 556 0.3.04 x/1 ADF 48 Volis Volis VSD OB us Volisge (Unit) § S A444 557 0.3.04 x/1 ADF 48 Volis VSD OB us Volisge (Not) § S A445 558 0.3.04 x/1 ADF 59 Volis VSD OB us Volisge (Not) § S A445 559 0.3.04 x/1 ADF 59 Volis VSD OB us Volisge (Not) § S A445 559 0.3.04 x/1 ADF 59 Volis VSD OB US VSD OB US US FIRED (TAINED (TAINED SE) § S A449 560 0.3.04 x/1 ADF 51 ° F (diff) ° G (diff) § S S Economized Value (Found Tube) § S A449	LEAD		AI38	551	03,04	×1	ADF 42	None	None	S	88888
A440 5553 03.044 x.10 ADF 45 % % 59.1 Economizer Valve % Open 51.5 A441 5554 03.04 x.10 ADF 46 % % 8.5 Set I Economizer Valve % Open 5.5 A442 5555 03.04 x.10 ADF 47 PSII BARB Suction Pressure Culcult Frame Er. A444 557 03.04 x.10 ADF 47 ADF 49 Volis 님	SETP	AI39	552	03,04	×10	ADF 43	₽	ွ	nt	8 8 8 8	
A44 555 0304 X10 ADF 45 % Sys E Conomizer Valve & Open S S A A A S S E Conomizer Valve & Open S S A A A S S E Conomizer Valve & Open S S A A A S S E Conomizer Valve & Open S S A A A S S E Conomizer Valve & Open S S A A A S S E Conomizer Valve & Open S S A A A S S E Conomizer Valve & Open S S A A S E E Conomizer Valve & Open S S A A E A S S E E E CONOMIZER VALVE & OPEN S S A E E E CONOMIZER VALVE & OPEN S S A E E CONOMIZER VALVE & OPEN S S A E E CONOMIZER VALVE & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER & OPEN S S A E E CONOMIZER SALVE & OPEN S S A E E CONOMIZER & OPEN S S A E E CONOMIZER & OPEN S S A E E CONOMIZER &	닖	CUTOUT	AI40	553	03,04	×10	ADF 44	Ļ	ပ္	S	S S
A42 555 03.04 X10 ADF 47 PSI BAR Six E Economical Yalawa, Open SI A44 555 03.04 X1 ADF 47 PSI BAR Sixtloin Pressure Cutour SI A44 557 03.04 X1 ADF 48 Volts Volts Volts Voltage Sys I Frame EF) SI A44 558 03.04 X1 ADF 48 Volts VSD DC Bus Voltage Sys I Frame EF) O A44 559 03.04 X10 ADF 59 Fr (fill) Volts VSD DC Bus Voltage Sys I Frame EF) O A44 569 03.04 X10 ADF 59 Fr (fill) Sys I Succioning Macrochannel) S A44 561 03.04 X10 ADF 53 Fr (fill) Colf MS Sys I Succioning Macrochannel) S A45 562 03.04 X10 ADF 53 Fr (fill) Colf MS Sys I Succioning Macrochannel) S A45 565 03.04 X10 ADF 53 Fr (fill) Colf MS Sys I Succ		ON VLV	AI41	554	03,04	×10	ADF 45	%	%	S	S S S
A444 557 03.04 x10 ADF 47 PSI BAR BALIOL Pressure Cutout S S A446 557 03.04 x1 ADF 48 Volts		ON_VLV	AI42	555	03,04	×10	ADF 46	%	%	S	S S
A144 557 0304 x1 ADF 48 Volts Volts VSD DC Bus Voltage Sys (Frame EF) 0 A446 558 0304 x1 ADF 49 Volts VVIS DC Bus Voltage Sys (Frame EF) 0 0 A446 559 0304 x10 ADF 51 °C (fift) °C (fift) NVSD DC Bus Voltage Sys (Frame EF) 0 0 A447 560 0304 x10 ADF 51 °F (diff) °C (fift) Sys D C Bus Voltage Sys (Frame EF) 0 0 A448 567 0304 x10 ADF 53 °C (fift) Sys IS Evaporator Liquid Level (Round Tube) S S A150 568 0304 x10 ADF 53 °C (fift) Sys IS Evaporator Liquid Level (Round Tube) S S A152 566 0304 x10 ADF 53 °C (fift) Sys IS Evaporator Liquid Level (Round Tube) S S A152 566 0304 x10 ADF 56 °C (fift) Sys IS Evaporator Liquid Level (Round Tube) S S	딩	PRS_CUT	AI43	556	03,04	×10	ADF 47	PSI	BAR	S	S S S S
VVT2 A446 558 03.04 x1 ADF 40 Volts Volts VSD DC Bus Voltage Sys 2 (France Erf) O COINT A446 559 03.044 x10 AADF 30 °F °C ARDF 30 °F °C ARDF 30 °F °C ARDF 30 °C ARDF	30_1	VSD_DCB_VT	A144	222	03,04	⋝	ADF 48	Volts	Volts	Ø	S S S S
Addition Addition	30.	CB VT2	AI45	558	03,04	×	ADF 49	Volts	Volts	0	00000
A447 560 0304 x10 ADF 51 °F (diff) %° (diff) Sys Expanoalor Liquid Level (Round Tube) O O A448 562 0304 x10 ADF 52 % Sys Exbooling (Microchanne) O O A450 562 0304 x10 ADF 54 % Sys Exbooling (Microchanne) O O A51 564 0304 x10 ADF 56 °F (diff) °C (diff) Sys Exbooling (Microchanne) O O A153 566 0304 x10 ADF 56 °F (diff) °C (diff) Sys Exbooling (Microchanne) O O A154 566 0304 x1 ADF 56 °F (diff) °C (diff) Sys 1 bachage bach repaired S	ME	SETPOINT	AI46	559	03,04	×10	ADF 50	¥.	၀ွ	S	_
A148 561 03.04 x10 ADF 52 % % Sys 1 Evaporator Liquid Level (Round Tube) S S A149 562 03.04 x10 ADF 53 ° (diff) ° (Sys 1 Evaporator Liquid Level (Round Tube) S S A150 563 03.04 x10 ADF 54 ° Cooling Range S S S Evaporator Liquid Level (Round Tube) S S A152 565 03.04 x10 ADF 56 ° (Coling Sp 2 Evaporator Liquid Level (Round Tube) S S A153 566 03.04 x10 ADF 57 ° (Cidif) SQ 2 Evaporator Liquid Level (Round Tube) S S S A154 566 03.04 x1 ADF 57 ° (Cidif) SQ 2 Evaporator Liquid Level (Round Tube) S S A155 566 03.04 x1 ADF 58 None SQ 2 Evaporator Liquid Level (Round Tube) S S A156 570 03.04 x1	us_i	BCOOL	AI47	260	03,04	×10	ADF 51	°F (diff)	°C (diff)	0	
Al50 562 03,04 x10 ADF 53	J.EV.	AP_LL	AI48	561	03,04	×10	ADF 52	%	%	Sound Tube)	8 8 8 8
Al50 563 03.04 x10 ADF 54 % % Syg E Yeaporator Liquid Level (Round Tube) S S S S S S S S S S S S S S S S S S	S_su	BCOOL	AI49	562	03,04	×10	ADF 53	°F (diff)	°C (diff)	0	0 0
AIST 564 03,04 x10 ADF 56 °C Cooling Brange S S AISZ 566 03,04 x10 ADF 56 °C (diff) °C (diff) Sys 1 Discharge Superheat S S AISZ 566 03,04 x10 ADF 57 °C (diff) °C (diff) Sys 2 Discharge Superheat S S AISZ 566 03,04 x1 ADF 58 None None Sys 1 System State [0=Stopped, 1=Running, 2=Faulted, S S System State [0=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, System State [Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, System State [Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, System State [Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, 1=Stopped, System Stopped, 1	EV.	AP_LL	AI50	563	03,04	×10	ADF 54	%	%	S	S S
Al55 566 03,04 x10 ADF 56 'T (diff) Sys 1 Discharge Superheat S S		NG RNG	AI51	564	03,04	×10	ADF 55	ال ال	ာ လ	S	လ လ လ
Al55 566 03,04 x1 ADF 58 None None Sys 2 Dischage Suberneal Sys 2 System State [0=Stopped, 1=Running, 2=Faulted, S S System State [Stopped, 1=Running, 2=Faulted, S S System State [Stopped, 1=Stopped, 1=Sto	בו ב	ONTEAL	AISZ	202	03,04	OIX	ADF 30	-F (diff)	C (dilli)	0	n 0
A154 567 03,04 x1 ADF 58 None None Sys 2 System State (Je-Stopped, 1=Running, 2=Faulted, 5 S S S S S S S S S S S S S S S S S S	SO -	SHEAL	AI53	266	03,04	×10	ADF 57	°F (diff)	°C (di#)	S	S
Al55 568 03.04 x1 ADF 59 None None Amps	S1_SY8	S_STATE	AI54	267	03,04	x1	ADF 58	None	None	S	8 8 8 8
Al56 569 03,04 x1 ADF 61 Amps Amps Sys 1 Motor Current Overload Setting S S	S-SY	S_STATE	A155	268	03,04	x1	ADF 59	None	None	pped, 1=Running, 2=Faulted, S	S S S S
AI57 570 03.04 x1 ADF 61 Amps Amps Amps Sys 2 Motor Current Overload Setting S S	EM_	R_OVER	AI56	269	03,04	×	ADF 60	Amps	Amps	S	_
AIS8 571 03,04 x1 ADF 62 None Condenser Fan Control Type [1=Std. VSD, 2=Opt. VSD, 2=Opt. VSD, 2=Opt. VSD, 3=Std. Staged, 4=Opt. Staged, 5=Std. VSD with Interlock, 3 S=Std. Staged, 4=Opt. ENH, 8 = Opt. ENH, 8 = Opt. ENH, R =	2 MTF	A_OVER	AI57	570	03,04	×	ADF 61	Amps	Amps	S	S S S
Al59 572 03.04 x1 ADF 63 None Free Cooling Mode [0=Mech, 1=Free Cool, 2=Hybrid] O O	Į,	YPE	AI58	571	03,04	X	ADF 62	None	None	VSD, 2=Opt. VSD, . VSD with Interlock, NH, 8 = Opt. ENH	о о о
Al60 573 03.04 x1 ADF 64 % % Free Cooling Control Programmed (0=Disabled, 1=Open N O	FC_MODE	DE	AI59	572	03,04	×	ADF 63	None	None	0	0 0 0 0
LVE Al61 574 03,04 x10 ADF 65 % % Cooling Coil Bypass Valve (Free Cooling Closed Loop) N O	FC_CTRI	R.	A160	573	03,04	×	ADF 64	%	%	z	0 0 0
AI62 575 03,04 x10 ADF 66 % Cooling Coil Valve (Free Cooling Closed Loop) N O TEMP AI63 576 03,04 x10 ADF 67 °F °C Cooling Coil Temperature (Free Cooling Closed Loop) N O TEMP AI64 577 03,04 x10 ADF 68 °F °C Closed Loop) N O TEMP AI65 578 03,04 x10 ADF 69 °F °C Heat Exchanger Enaving Temperature (Free Cooling N O TEMP AI65 578 Closed Loop) N O Heat Exchanger Enaving Temperature (Free Cooling N O	S_BY	P_VALVE	AI61	574	03,04	×10	ADF 65	%	%	z	00000
Al63 576 03.04 x10 ADF 67 °F °C Cooling Coil Temperature (Free Cooling Closed Loop) N O N O	S_VA	LVE	A162	575	03,04	×10	ADF 66	%	%	Z	0 0 0
Al64 577 03,04 x10 ADF 68 °F °C Heat Exchanger Leaving Temperature (Free Cooling N O Al65 578 03,04 x10 ADF 69 °F °C Changed Leaving Temperature (Free Cooling N O	1 1 1	MP	AI63	576	03,04	×10	ADF 67	ĥ	ပွ	z	0 0 0 0
Al65 578 03,04 x10 ADF 69 °F °C Heat Exchanger Entering Temperature (Free Cooling N O	X_LE/	AVE_TEMP	A164	577	03,04	×10	ADF 68	Å	°C	ger Leaving Temperature (Free Cooling N	00000
	× EN.	TER_TEMP		578	03,04	×10	ADF 69	ĥ	ပွ	Z	0 0 0 0

Property of Johnson Controls Subject to change without notice.

Form 201.28-NM1.1 Issue date: 08/06/2021

Table 14 - YVAA native communications data map (cont'd)

tem		BACnet	Modbus	Modbus Data Type	SnqpoM		Engineer	Engineering Units	Point List Code: S = Standard O = Optional N = Not Available	vailable
Het.	BACnet Name	Object	Address		Scaling (See	N2 Metasys	, 1	,	- 171	0 4 6 4 0
	OI V DMD CDD	Nice	670	VO 60	Note 3)	ADE 70	ımperiai %	ە م	Point List Description	2 3 4 5 6 7 8 9
	GLY PIMP SPD	Albb	5/9	03,04	01x	ADF /0	% L	% 9	Glycol Pump Speed (Free Cooling Closed Loop)	
(2)	SUCI LEMP	A167	580	03,04	×10	ADF /1	Ϋ́		Sys 1 Suction I emperature (YAGK)	000
9 1	SAL SUCI	A168	581	03,04	01x	ADF /2	ļ.	П.	Sys 1 Sat Suction Temperature (YAGK)	000
<u> </u>	SUCI SHEAL	A169	282	03,04	01x	ADF 73	°F (diff)	°C (diff) «	Sys 1 Suction Superheat (YAGK)	
0 0	SIICT TEMP	AI70	584	03,04	X X X	ADF 74	۶ ĥ	ķς,	Sys 1 Flash Talik Dialit Valve % (TAGN) Sys 2 Suction Temperature (YAGK)	
80	SAT SUCT	AI72	585	03.04	×10	ADF 76	- <u>u</u>	ာပွ	Sys 2 Sat Suction Temperature (YAGK)	
	2 SUCT SHEAT	AI73	586	03.04	×10	ADF 77	°F (diff)	°C (diff)	Sys 2 Suction Superheat (YAGK)	000
82	2 FTDV CMD	AI74	282	03,04	×10	ADF 78	%	%	Sys 2 Flash Tank Drain Valve % (YAGK)	0 0 0 0
	INPUT_CURR	AI75	588	03,04	×10	ADF 79	Amps	Amps	Unit Input Current Amps	S S S S S
. 84	1 FAN KW	AI76	289	03,04	×10	ADF 80	None	None	Sys 1 Fan Kw	SSS
	1_COMP_KW	AI77	290	03,04	×10	ADF 81	None	None	Sys 1 Compressor Kw	S S S
98	2 FAN KW	AI78	591	03,04	×10	ADF 82	None	None	Sys 2 Fan Kw	00 00 00 00 00 00 00 00 00 00 00 00 00
	S1 XI SPD CMD	AIRO	593	03,04	Z ×	ADF 84	900 %	Wolle	Sys 1 XI Condenser Fan Sneed Command) Z
	S2 XL SPD CMD	AI81	594	03,04	×	ADF 85	%	%	Sys 2 XL Condenser Fan Speed Command	0 2 2 2 2
06	S1_WARN_CODE	A182	262	03,04	×1	ADF 86	None	None	Sys 1 Warning Code	0 2 2 2 2
91	S2_WARN_CODE	A183	296	03,04	×	ADF 87	None	None	Sys 2 Warning Code	0 Z Z Z Z Z Z
IAR	SINARY READ ONLY POINTS	INTS								
	CH_ALARM	BI1	1282	$\overline{}$	N/A	BD5	0/1	0/1	Chiller Alarm [0=No Alarm, 1=Alarm]	S S S
	CH RUN	BI2	1283		Y/A	BD6	0/1	0/1	Chiller Run [0=No Run, 1=Run]	S S S
94	EVAP HEATER	BIS	1284	01,02,03	¥ ×	BD7	500	0/1	Evaporator Heater Status	w w w
	S1 COMP RIN	B15	1286		√ \/N	808	5	7/0	Svs 1 Compressor Blin Status	
	S2 COMP RUN	BIG	1287		Ϋ́	BD10	0/1	0/1	Svs 2 Compressor Run Status	S S S
	S1_VI_STEP1	BI7	1288		A/A	BD11	0/1	1/0	Sys 1 VI Step Solenoid Valve 1 Status	S S S
	S2 VI STEP1	BI8	1289	_	N/A	BD12	0/1	0/1	Sys 2 VI Step Solenoid Valve 1 Status	S S S
	S1_VI_S1EP2	618	1290		V/Ν	BD13	1/0	0/1	Sys 1 VI Step Solenoid Valve 2 Status	S O
101	S2 VI STEP2	B110	1291	01,02,03	∀ × ×	BD14	0/1	0/1	Sys 2 VI Step Solenoid Valve 2 Status	S C C
	WATER GLYCUL	B112	1292		4 A	BD15	0 0	0/1	Cooling Type [∪=water, T=Giycol] Local Bemote Control Mode [0=1 ocal T=Bemote]	
+	DISP_UNITS	B113	1294	01,02,03	A/N	BD17	0/1	0/1	Display Units [0=Imperial, 1=Sl]	S S S
	S1_LOCKOUT	BI14	1295		A/N	BD18	0/1	0/1	Sys 1 Lockout	S S S S S S
	S2_LOCKOUT	B115	1296		N/A	BD19	0/1	0/1	Sys 2 Lockout	S S S S S S S S
	FC_VALVE	BI16	1297	_	N/A	BD20	0/1	0/1	Free Cooling Valve [0=Off, 1=On] (Free Cooling)	S S S
	SOFT_SHUT	B117	1298		Ψ/N	BD21	0/1	0/1	Soft Shutdown [0=Disabled, 1=Enabled]	S S
_	REM_EVAP	B118	1299	01,02,03	Ψ/N	BD22	0/1	0/1	Remote Evaporator [0=Disabled, 1=Enabled]	S 0
110	COICK SI	BIJO	1300	01,02,03	Ψ/Z/2	BD23	50 50	L/0	Quick Start [0=Disabled, 1=Enabled]	
	SOUND OP	BI21	1302		Z Z	BD25	0/1	0/1	Sound Limit Option [0=Disabled, 1=Enabled]	
113 (GLY_PMP_RUN	B122	1303	_	A/N	BD26	1/0	0/1	Glycol Pump Run [0=Off, 1=On] (Free Cooling Closed Loop)	0 0 0 0 0
114 (GLY_HEATER	B123	1304	01,02,03	N/A	BD27	0/1	0/1	Glycol Heater [0=Off, 1=On] (Free Cooling Closed Loop)	000000
115	FLOW_SWITCH	B124	1305	01,02,03	N/A	BD28	1/0	0/1	Glycol Heater [0=Off, 1=On] (Free Cooling Closed Loop)	σ σ σ z z
116	S1_COND_FAN_ VSD_FAULT	B125	1306	01,02,03	N/A	BD29	0/1	0/1	Sys 1 XL Condenser Fan Speed Command	0 0 z z z z z
117	S2_COND_FAN_ VSD_FAULT	B126	1307	01,02,03	N/A	BD30	1/0	0/1	Sys 2 XL Condenser Fan Speed Command	0 0 2 2

Property of Johnson Controls Subject to change without notice.

Table 15 - YVAA operational and fault/inhibit codes

NOTE	5
1	Units have Native BACnet MS/TP, Modbus RTU, and N2 communications. No external Gateway is required for these interfaces unless the customer is using Connected Services.
	BACnet Object Types: 0 = Analog In, 1 = Analog Out, 2 = Analog Value, 3 = Binary In, 4 = Binary Out, 8 = Device, 15 = Alarm Notification (0-127 are reserved ASHRAE Objects)
	WC = Inches of water Column, CFM = Cubic Feet per Minute, FPM = Feet Per Minute, PSI = Pounds per Square Inch, Pa = Pascals, kPa = kiloPascals, PPM = Parts Per Million, kJ/kg = kiloJoules per kilogram
4	Values that are not applicable due to unit configuration and options will be sent as zero (0).
5	Modbus values are all of type signed. Scaling values in x10 (Bold) indicate scaling in metric is x100. Scaling and signing may not be modified in the field.
6	
7	
8	
9	
10	

Code Value	Operational Code
63	Manual Override
64	Daily Schedule Shutdown
65	Unit Switch OFF
66	Remote Controlled Shutdown
67	Loss of External Communications
68	Flow Switch Shutdown
69	VSD Cooling Shutdown
70	Serial Number Shutdown
71	
72	Discharge Superheat Recovery
73	
74	No Run Permissive
75	Anti-Recycle Timer Active
76	System Switch OFF
77	System Not Running
78	System Running
79	Discharge Pressure Limiting
80	Suction Pressure Limiting
81	Motor Current Limiting
82	Free Cooling
83	ISN/BAS Motor Current Limiting
84	Remote Motor Current Limiting
85	System Shutting Down
86	VSD Pre-Charging
87	VSD Baseplate Temp Limiting
88	VSD Internal Ambient Temp Limiting
89	Sound Limiting
90	ISN Sound Limiting
91	Remote Sound Limiting
92	Pulldown Motor Current Limiting
93	Cooling Demand Shutdown
94	Input Current Limiting
95	ISN Input Current Limiting
96	Remote Input Current Limiting
97	Pulldown Input Current Limiting
98	

Code Value	Fault/Inhibit Code
0	No Fault Code
1	Low Ambient Temperature
2	High Ambient Temperature
3	Low Chilled Liquid Temperature
4	VSD Initialization Failure
5	Low RTC Battery Voltage
6	Invalid Number of Compressors Selected
7	VSD Communications Failure
8	Pre-charge Low DC Bus Voltage (Unit)
9	Pre-charge DC Bus Voltage Imbalance (Unit)
10	High DC Bus Voltage (Unit)
11	Low DC Bus Voltage (Unit)
12	DC Bus Voltage Imbalance (Unit)
13	High VSD Ambient Temperature
14	Single Phase Input (Unit)
15	VSD Power Supply Fault
16	VSD Logic Board Fault
17	Motor Current Overload (Hardware)
	(
18	CT Plug Fault
19	High Harmonic Filter Temperature
20	Evap Anti-Freeze Pump Fault
21	Low Heat Exchanger Temperature
22	
23	
24	
25	
26	
27	High Discharge Pressure (Software)
28	High Differential Oil Pressure
29	Low Differential Oil Pressure
30	Low Suction Pressure
31	High Discharge Temperature
32	in the second of
33	Eductor Clog Fault
34	Sensor Failure
35	Low Motor Current
36	High Motor Temperature
37	Pre-charge Low DC Bus Voltage (System, Frame E/F)
38	Pre-charge DC Bus Voltage Imbalance (System, Frame E/F)
39	High DC Bus Voltage (System, Frame E/F)
40	Low DC Bus Voltage (System, Frame E/F)
41	DC Bus Voltage Imbalance (System, Frame E/F)
42	High Motor Current
43	Motor Current Overload (Software)
44	IGBT Gate Driver Fault
45	High Baseplate Temperature
46	Single Phase Input (System, Frame E/F)
47	VSD Run Signal Fault
48	High Discharge Pressure (Hardware - HPCO)
49	Low Suction Superheat
50	Control Voltage Fault

Code Value	Fault/Inhibit Code (cont.)
51	Low Discharge Superheat
52	Low Suction Pressure Smart Freeze
53	Isolation Valve Failed to Close Warning
54	Isolation Valve Failed to Open Fault
55	High Discharge Pressure Rate
56	Condenser Fan VSD Warning

Code Value	Warning Code
0	No Warning Set
1	Quarterly Service Required - Contact JCI
2	Yearly Service Required - Contact JCI
3	3 Year Service Required - Contact JCI
4	5 Year Service Required - Contact JCI
5	Replace Oil Filter

Property of Johnson Controls Subject to change without notice.

01/08/20

			York Talk 2 (eLink)	2 (eLink)		Board: 031-02478, 031-03478	3, 031-03478
Ε	Version	York P/N	Band			Comments	
	S.ACS.23.03, C.ACS.21.03,	031-02476-010, -	4800		New	M	
	C.ACS.27.03	013, -301, -331					
	Y.ACS.20.01 , Y.ACS.23.01, Y.ACS.21.01,	031-03476-010 ,-	7000		, and M	The state of the s	
	Y.ACS:27.01	013, -301, -331	4000		2	A	
	Y.ACS.20.02	031-03476-010	4800		MD	Jpdate	
	Y.ACS.20.04	031-03476-010	4800		ηD	pdate	
	Y.ACS.20.05	031-03476-010	4800		Up	pdate	
	Y.ACS.20.06 - Y.ACS.20.10	031-03476-010	4800		ηD	Jpdate	
	Y.ACS.20.12	031-03476-010	4800		ηD	pdate	
l							

$\overline{}$	l lī			_		_				_	-				_	_			_		_		_	_		-	_			_	_		_	_	_
			10								_																							_	
			6								_																							_	_
			8	Ļ			_	_	_				-			_	_	_		-					_	-	_	-	_				_		_
			7	S	S	S	z	S	z	z	_	S	S	S	S	S	S	0	S	S		S	S	S	S	S	0	S	S	S	S	S	S	_	S
			9	S	S	S	z z	S	z	z	S	S	S	S	S	S	S	0	S	S	S	S	S	S	S	S	0	S	S	S	S	S	S	S	S
			4 5	SS	SS	S	Z	SS	_	z	S	S	S	S	S	S	S	0	S	S	S	SS	S	SS	S	S	0	SS	SS	SS	SS	SS	S	S	S
			3 7	S	S	S	Z	S	z	z	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
			7	S	S	S	z	S	~ フ	z	S	S	S	S	S	S	S	S	S	S		S	S	S	S	S	S	S	S	S	S	S	S	_	S
		e	-	S	S	S	z	S	z	z		S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S		S
		ilat		٠,	0,	0,	_	٠,	_	_	-	٠,	0,	0,	0,	,	٠,	0,	0,	0,	0,	0,	0,	٠,	0,	٠,	٠,	0,	٠,	0,	0,	0,	0,	0,	0,
		Point List Code: S = Standard O = Optional N = Not Available	Point List Description	Remote Setpoint	Remote Current Limit Setpoint	Remote Sound Limit		Remote Start/Stop Command [0=Stop, 1=Run]			History Buffer 1 Request [0=Live Data, 1=History 1 Data]	_eaving Chilled Liquid Temp	Entering Chilled Liquid Temp	VSD Internal Ambient Temp	Sys 1 Condenser Temperature	Sys 1 Discharge Temperature	Outside Ambient Air Temperature	Sys 1 Eductor Temperature (Aggreko disabled)	Sys 1 Oil Pressure	Sys 1 Suction Pressure	Sys 1 Discharge Pressure	Sys 1 Compressor % Full Load Amps	Sys 1 Total Run Hours	Sys 1 Total Number of Starts	Sys 1 Highest Motor Temp	Sys 2 Highest Motor Temp	Sys 2 Eductor Temperature (Aggreko disabled)	Sys 2 Oil Pressure	Sys 2 Suction Pressure	Sys 2 Discharge Pressure	Sys 2 Compressor % Full Load Amps	Sys 2 Total Run Hours	Sys 2 Total Number of Starts	VSD Output Frequency	Sys 1 Condenser Drain Valve % Open
N 1		Engineering Units			%			1/0				၁	၁့		၀			၁့		BAR	}	%	None	None		၁	ပွ	BAR	BAR	BAR	%	None	None		%
SECTION 1		Engi	Imperial			%		1/0			0/1	٩	٩٠	J۰	¥.	J۰	J۰	٩٠	PSI	PSI	PSI	%	None	None	J.	Å	٩	PSI	PSI	PSI	%	None	None	Hz	%
		Modbus	Scale	Div 10	Div 10	Div 10	Div 10	N/A	N/A	N/A	N/A	×10	×10	×10	×10	×10	×10	×10	×10	×10	×10	×10	×	×	×10	×10	×10	×10	×10	×10	×10	×	×	×	×10
			Address	0001	0005	0003	0004	0061	0062	0063	0064	0002	9000	2000	8000	6000	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	0020	0021	0022	0023	0024	0025	0026	0027	0028
		N2	metasys	ADF 1	ADF 2	ADF3	ADF 4	BD 1	BD 2	BD 3	BD 4	ADF 5	ADF 6	ADF 7	ADF 8	ADF 9	ADF 10	ADF 11	ADF 12	ADF 13	ADF 14	ADF 15	ADF 16	ADF 17	ADF 18	ADF 19	ADF 20	ADF 21	ADF 22	ADF 23	ADF 24	ADF 25	ADF 26	ADF 27	ADF 28
		ype		(21)	(51)	(51)	(51)	(36)	(66)	(62)	(92)	(51)	(51)	(51)	(21)	(21)	(51)	(51)	(51)	(51)	(51)	(51)	(51)	(51)	(51)	(51)	(51)	(51)	(51)	(51)	(51)	(51)	(51)	(51)	(21)
				Ψ.	Ψ.	Ψ,	Ψ,				_	Ψ.	Ψ.	Ψ.	Ψ.	Ψ,	Ψ.	Ψ.	Ψ.	Ψ.	Ψ.	Ψ,	Ψ,	Ψ,	Ψ-	4	Ψ.	Ψ.	Ψ.	Ψ,	Ψ,	Ψ,	Ψ.	-	Ψ.
		LON SNVT 1		count	count	SNVT_count	SNVT_count	switch	switch	switch	switch	SNVT_count	SNVT_count_	SNVT_count	SNVT_count	SNVT_count	SNVT_count_	SNVT_count_	SNVT_count	SNVT_count_	SNVT_count	SNVT_count_	SNVT_count_	SNVT_count_	SNVT_count	SNVT_count	SNVT_count	SNVT_count	SNVT_count	SNVT_count	SNVT_count	SNVT_count	SNVT_count	SNVT_count	SNVT_count
		ัง			T_c	c	c	_ 		Ľ	Ë		T_c	c	7_د	ე_	T_c	T_c	_ 	T_c	_ 	c	c	T_c	ار ط	ျ		T_c	T	c	c	c	ار ط	ار ا	_ _
		Ď		SNVT	SNVT	Ň	N	SNVT	SNVT	SNVT	SNVT	ŠN	ŠN	N	Š	Š	NS	ŠN	Š	ŠN	Š	N	Ň	ŠN	Š	Š	ŠN	ŠN	NS	Ň	Ň	Ň	Š	Š	Š
		ej.	маше	_				\vdash			_	nvoYTS01p011 S	nvoYTS01p012 S	nvoYTS01p013 S	nvoYTS01p014 S		nvoYTS01p016 S	nvoYTS01p017 S	nvoYTS01p018 S					P23 nvoYTS01p023 S	nvoYTS01p024 S	nvoYTS01p025 S	nvoYTS01p026 S	nvoYTS01p027 S	nvoYTS01p028 S		nvoYTS01p030 S	nvoYTS01p031 S		_	nvoYTS01p034 S
		_		N	N	Š	N	Ŋ	N	N	≥	ž	N	N		ž	N	N	N	N	N	N	N	ž	N	ž	ž	N	υVC	N	N	N	N	ž	ž
		ţ		P03	P04	P05	P06	P07	P08	P09	_	P11						P17	P18	P19	50	21	22	23	P24	P25	P26	P27							P34
		BACnet Object	บ	1	1		- 1	1	- 1		- 1		P	Ы	ď	Ы	S01_P16	Ы	ď	P	Pž	Pź	Pž	Ľ	P		- 1	- 1	1	1	- 1	1		- 1	- 1
		et C	мате	S01	S01	S01	S01	S01	S01	S01	S01	S01	S01_	S01_	S01_	S01_	S01	S01_	S01_	S01_	S01	S01_	S01_	S01_	S01	S01	S01	S01	S01	S01	S01	S01	S01	S01	S01
		Ş	ے ا				1	- 1	1	YT2_ \$		YT2_ \$	YT2_ \$	YT2_ (YT2_ \$	YT2_ (YT2_ \$	YT2_ \$	YT2_ (YT2_ \$	YT2_ (YT2_ \$	YT2_ \$	YT2_ \$	YT2_ \$		- 1				1	1	YT2_ \$		YT2 (
		B /		YT2	YT2	YT2	YT2	YT2	YT2	⋝	⋝	Σ	Υ	Υ	₹	Y	Σ	Υ	⋝	Υ	⋝	Υ	⋝	Σ	⋝	YT2	YT2	YT2	YT2_	YT2	YT2	YT2	⋝	YTZ	⋝
		st st	ns	_	2	3	4	_	2	3	4	2	9	7	8	6	0	11	2	3	4	5	9		8	6	50	21	22	23	24	25	56	7	8
		BACnet Object	Typ/Ins									AV5			AV8	6AV	AV10	AV11		AV13			AV16	AV17			AV20	AV21	AV22		AV24		AV26		AV28
		Eng Page	Ref	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20	P21	P22	P23	P24	P25	P26	P27	P28	P29	P30	P31	P32	P33	P34

Johnson Controls, Inc. Subject to change without notice.

YVAA YVFA YAGK BAS 8 JAN 2020

2 of 5

Table 16 - YVAA E-Link communications data map (cont'd)

Ī		10					Ī														1		1	1				I											Ī				Ī			П	٦	Ī	Ţ	
		8																																					\pm				ł			Н	_		\pm	
01/08/20		_	_	-	_	_	-	SO O	_	4-	+-	+-	-	_	-+	_	-	-+	_	-	-	-	-	n u	+	+	+	+	+	+-	_	SS	S	_	-	-	o so	1	-	-	_	SO O		S	S	-		_	_	S
01		4 5	_	-	_	-	-	in o	_	4-	+-	_	-	_	_	-	-	-+	-	_	-	_	-	-	n co	+	0 C	+	÷	+-	_	S S	S S	S	_	_	o co	_	_	-	_	S O	+	S	SS	_	_		_	S
		3	S	S	S	S	0	n u) (C	S	S	S	z	z	z :	z	တ (S)	က :	z 2	z:	z	S) (n u	n cr	0	n C	0	n O	S	z	SS	S	S	S	S	0 00	v.) (S	S	n u	n	S S	S	S	s :	z	Z	S
	lable		_	_	_	S	_	<i>y</i> 0		_	_	_	-	_	_	_	_	_	_	_	_	_	-	n 0	_	_	_	_	_	_	_	S		_	_	_	2 0	_	_	_	_	<i>y</i> 0		S		_		z 2		z
	= Not Available																																																	
	Point List Code: $S = Standard O = Optional N = Not$	Point List Description	Sys 2 Condenser Drain Valve % Open	Chiller Run	Chiller Alarm [0=No Alarm, 1=Alarm]	Evaporator Heater Status	Evaporator Purrip Status	Sys 1 Compressor Run Status	Sys 2 Compressor run Status Sys 1 VI Sten Solenoid Valve 1 Status	Svs 2 VI Step Solenoid Valve 1 Status	Sys 1 VI Step Solenoid Valve 2 Status	Sys 2 VI Step Solenoid Valve 2 Status				: : : : : : : : : : : : : : : : : : :	Cooling Type [0=Water, 1=Glycol]	Local Remote Control Mode [0=Local, 1=Remote]	Display Units [0=Imperial, 1=SI]				Sys 1 Operational Code	Sys I Fault Code	Sys z Operational Code Sys 1 Fault Code	Cyc 1 Cardonest Ean Chan [0 14]	Sys 1 Condenser Fan Spaed [VSD]	Cim 2 Condonos Fon Chan I 41	Sys z Condenser Fan Stage [0-14] Sys 2 Condenser Fan Speed [VSD]	Lead System Number		Local Leaving Chilled Liquid Setpoint	Low Leaving Chilled Liquid Temp Cutout	Sys 1 Economizer Valve % Open	Sys 2 Economizer Valve % Open	Low Suction Pressure Cutout	Remote Leaving Chilled Liquid Setboint	Sys 1 Subcooling (Microchannel)	Sys 1 Condenser Level (Round Tube)	Cooling Range	Sys 1 Discharge Superheat	Sys 2 Condenser Temperature	's z Discharge Terriperature	Sys Z Subcooiing (Microchanne) Sys 2 Condenser Level (Round Tube)	Sys 2 Discharge Superheat	Sys 1 Lockout	Sys 2 Lockout	Flow Switch Status		SCC Auto Detect Available
					0/1 C		Ì	(V)									٥ ا	T	0/1 Di				_	_	None S.	T	_	1	None Sy	1		ാ ാം			T	BAR Lo	1	(J			£	ر رو رو		<u>ල්ලා</u> (am) ද ර	i#)			0/1 Fi		0/1
	Engineering Units	Imperial	%	0/1	0/1	0/1		505	5 6	0/1	0/1	0/1				-	0/1	1/0	0/1			+	+	None	None	+	+	+	+	+	\vdash	٠Ł	J۰	%	%	PSI	SID A	Œ	% L	\dashv	(H	Ļ ļ	+	رساق) ہے۔ چ	°F (diff)	0/1	0/1	0/1		0/1
																		_			_	- -	z ;	2 2	2 2	2 2	ZZ	2	ZZ	Z				_		-	-		-	7	1	-			H		-	-	+	
	Modbus	Scale	×10	N/A	Ν Α	Y S	2	V/A	Y X	N/N	N/A	N/A					Υ Σ	Ž	N/A				× '	× 5	× ×	< 2	< >	3	× ×	×		×10	×10	×10	×10	×10	x10	x10	;	×10	×10	01x	OI X	x10	×10	N/A	Y X	Α/N	2	N/A
	Mo	Address	0029	0065	9900	2900	0000	0000	0071	0072	0073	0074	0075	9200	7/00	8/00	6/00	0800	0081	0082	0083	0084	0030	0031	0033	0000	0035	9000	0037	0038	6000	0040	0041	0042	0043	0044	0046	0047	: 3	0048	0049	0050	1000	0052	0053	0085	9800	0087	0088	6800
	2	-	-29	2	9	20	0 0	5 G	2 =	12	13	14	15	16	17	8 9	13	25	27	3 6	2 2	74	- 0	ν c	ე 1	٠ د	o 9	2 1	\ 8	6	10	11	12	13	14	15	17	200	2 (19	50	12	77	23	24	22	56	27	20 6	RZ.
	N2 Motogy	MOTO	ADF29	BD 2	BD 6	BD 7		BD 9	BD 11	BD 12	BD 13	BD 14	BD 15	BD 16	BD 17	BD 18	BD 19	BD 20	BD 21	80.22	B G	BD 24	ADIT	ADIA	ADI 4	100	ADIA	7 10	ADI 8	ADI 9	ADI 10	ADI 11	ADI 12	ADI 13	ADI 14	ADI 15	ADI 17	ADI 18	į į	ADI 19	ADI 20	ADI 21	Ş	ADI 23	ADI 24	BD 25	BD 26	BD 27	BD 28	מ
	Гуре		f (51)	(92)	(92)	(92)	(22)	(95)	(92)	(92)	(66)	(66) ເ	(66) เ	(32)	(95)	(65)	(95)	(65)	(92)	(26)	(GE) ((65)	(12)	(101)	f (51)	£ (F1)	f (51)	£ (E4)	f (51)	f (51)	f (51)	f (51)	f (51)	f (51)	f (51)	f (51)	f (51)	f (51)	`	f (51)	f (51)	(51)	(1(2)	f (51)	f (51)	(92)	(92)	(92)	(32) (32)	(გგ)
	. TVNS		count	switch	switch (95)	switch (95)	SWILC	Switch (95)	switch (95)	switch (95)	switch	switch	switch	switch (95)	switch (95)	switch	switch (95)	Switch	switch (95)	SWITC	SWITC	switch (95)	count	COUNT_1 (5)		1 2		1	count	count	count	_count_f (51	count	count	count	conut	count f (51	tuio	, .	count	count	count	Conuit	count	count_f (51	switch	switch	switch	Switch	SWITC
	LON SNVT Type		SNVT	SNVT_switch (95)	SNVT	SNVT switch (95)	- ANIC	SNV	NNS.	SNVT	SNVT switch (95)	SNVT switch (95)	SNVT_switch (95)	SNVT	SNVT	SNVI_switch (95)	SNVI		SNVT	SINVI SWITCH (95)	SNVI_switch (95)	SNVI	SNV1 count 1 (51	SINVI COUNT 1 (5)	SNVT Count f (51	SNIVT count + (E1	SNVT Count f (51	CNIVT count f (61	SNVT count f (51	SNVT count f (51	SNVT	SNVT	SNVT_count_f (51	SNVT_count_f (51	SNVT_count_f (51	SNVT count 1 (51	SNVT	SNVT count f (51	. !	SNVT count f (51	SNVT_count_f (51	SNVI count 1 (51	- ^ _	SNVT_count_f (51	SNVT	SNVT_switch (95)	SNVT_switch (95)	SNVT switch (95)	- NNS	SNVT switch (95)
		-		_	_	_	+	-	+					-	-	+	+	_				-+	+	+	+	+	+	+	+	-	-			_	-	-	+-		_	_	_	_	_		+	Ш				
	LON Profile	מ	S01p0	S01pC	S01pC	S01pc	20100	SOTPC	Solp	S01pC	S01pC	S01pC	S01pC	S01pC	S01pc	S01pC	S01pC	SU1pC	S01pc	SOID	SUIP	S01pC	SUIPC	30 I DC	301pc	00100	20100	200	S01pC	S01pC	S01pC	S01pC	S01pC	S01p0	S01pC	S01pc	S01pC	S01pC		S01pc	S01pc	SOTPC	30.100	S01p0	S01pC	S01pc	S01p0	S01pc	SU1pc	S01pc
	LON		nvoYTS01p035	nvoYTS01p036	nvoYTS01p037	nvoYTS01p038	11VO Y 1 SO 1 DU 39	nvoY1S01p040	nvoYTS01p042	NvoYT	nvoYTS01p044	nvoYTS01p045	nvoYTS01p046	nvoYTS01p047	nvoYTS01p048	nvoY1S01p049	nvoY1S01p050	nvoY1S01p051	nvoYTS01p052	nvo Y 1 SU1 pU53	nvo Y I	nvoY1S01p055	nvoY1S01p056	nvo Y 1 SU 1 pU5/	nvo YTS01p059	DVO/TS015060	nvo YTS01p061	DVOVTEO 1 POG	nvoYTS01p063	nvoYTS01p064	nvoYTS01p065	nvoYT	nvoYTS01p067	nvoYTS01p068	nvoYTS01p069	nvoYTS01p070	nvoYTS01p0/2	nvoYTS01p073		nvoYTS01p074	nvoYTS01p075	nvoY1S01p0/6	IVO1	nvoYTS01p078	nvoYTS01p079	nvoYTS01p080	nvoYTS01p081	nvoYTS01p082	I YOYU	nvoYTS01p084
	oint	_	_	_	_	P38	_	P40	_				-	_	_	-	_	_		22.2		_	+	727	_	+	_	+	+	+			P67	_	_	P70	+	-		_		P/6 277	_	P78		-	P81	P82	P83	P84
	York Talk Point		- 1	- 1		801	- 1	500	1		1	1	1 1	- 1		- 1	- 1		S01		501	- 1	- 1	000		1	1	1	1	II.		- 1	1	- 1	- 1	S01	1	501	5	S01	S01	500	000	S01_	S01	S01	S01	S01 P82	S01	
	York			$YT2_{-}$		YT2	7 1 Z	7 Z	VT2	YT2	YT2	YT2	YT2_	YT2_	YT2_	Y12		- 1	YT2_	717	۲۱۶ زار	Y12	Z1 X	7 1 Z	7 L V	VT2	21.1 VT2	- CTV	717 YT2	YT2	YT2_	_YT2_	YT2_	YT2_	YT2_	YT2_	YT2	YT2	<u>'</u> !			7 Z	712	YT2_	YT2_	YT2_	YT2	YTZ	YT2	YT2
	ASCII Page	Ref	AV29	BV5	BV6	BV7	0 0	BV9	BV11	BV12	BV13	BV14	BV15	BV16	BV17	BV18	BV19	BV20	BV21	8722	BVZ3	BV24	LVM	NIVZ	MV4	MVE	CVIV.	M/7	MV8	6AM	MV10	AV30	AV31	AV32	AV33	AV34	AV36	AV37	.,,,,	AV38	AV39	AV40	A V 4 I	AV42	AV43	BV25			BV28	BV29
	Eng Page	Ref	P35	P36	P37	P38	55.0	P40	P42	P43	P44	P45	P46	P47	P48	P49	P50	151	P52	25	F25	P55	120	72	P59	090	P61	000	F63	P64	P65	99d	L94	P68	69d	P70	P72	P73	;	P74	P75	P/6 P77	//_	P78	P79	P80	P81	P82	F83	P84

SECTION 2

Table 16 - YVAA E-Link communications data map (cont'd)

	5 7 8 9 10		_		_		_	_	_	0	0					_	0 0	0 0		0	_	_	_	_	_	2 2		_	2 2	z	S	Z		_	0 0	_	_	_	0		z	z	_	_	S	w w	_	_	_	_
ilable	1 2 3 4 5 6	z	z z z z	z:	z z z z z z	z	z : z : z :	z : z : z :	z (z (z (0 0 0 0 N	0 0 z z z	2			0 0 2 2	0 2 2	0 0 0 N N	0 0 0 N N N	0 0 z z	0 0 N N	0 0 z z	0 0 2	0 0 z	0 0 z z	z 2 z 2 z 2	z	z z	z z z z z z	zz	ZZZZZ	NNSSSS	NNNN	z z z z	တ တ လ	0 (0 (0 (z z		000000000000000000000000000000000000000	z z z	0 0 N N	0 0 2 2	Z Z Z Z Z	z z z	z z z	z (z (z ((S) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O			0 0 0 0	S	0
Point List Code: S = Standard O = Optional N = Not Available	Point List Description								; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Evaporator Entering Liquid Temp (Free Cooling)	Cooling Coil Temperature (Free Cooling Closed Loop)	Host Exchanger Loaving Tomp (Free Cooling Closed Loan)	Heat Exchanger Entering Terrib (Ties Cooling Closed Loop) Heat Exchanger Entering Temp (Free Cooling Closed Loop)	Glycol Pump Speed (Free Cooling Closed Loop)	Cooling Coil Valve (Free Cooling Closed Loop)	Cooling Coil Bypass Valve (Free Cooling Closed Loop)	Sys 1 Suction Temperature (Aggreko)	Sys 1 Sat Suction Temperature (Aggreko)	Sys 1 Suction Superheat (Aggreko)	Sys 1 Flash Trank Drain Valve % (Aggreko)	Sys 2 Suction Temperature (Aggreko)	Sys 2 Sat Suction Temperature (Aggreko)	Sys 2 Suction Superheat (Aggreko)	Sys 2 Flash Trank Drain Valve % (Aggreko)							VSD Command Frequency			Option Indicator [0=Disabled, 1=Enabled]	Free Cooling Valve, if FC OL [0=Off, 1=On]	Sout Silutaowii (V=Disabled, 1=Erilabled) Remote Evanorator (0–Disabled, 1–Enabled)	Quick Start [0=Disabled, 1=Enabled]		Glycol Pump Run, if FC CL [0=Off, 1=On]	Glycol Heater, if FC CL [0=Off, 1=On]					Frame E/F [0=Disabled, 1= Enabled]	Sound Limit Option [0=Disabled, 1=Enabled] SCC Auto Defect Digit 1	SCC Auto Detect Digit 2	SCC Auto Detect Digit 3	SCC Auto Detect Digit 4	ל יופים הסיוסם סומר ססס
Engineering Units	SI								0	ပွ	ပ ပ	٥	ာင္စ	%	%	%	ာ့	°C	°C (diff)	%	ပွ	ပွ	°C (diff)	%							Hz			0/1	0/1	0/1	0/1		0/1	0/1					0/1	0/1	0/1	0/1	0/1 0/1	>
ngua N	Imperial								L	¥.	°F None	O LO	٥.	%	%	%	۰F	۰F	°F (diff)	%	۰F	۰F	°F (diff)	%							Hz			0/1	0/1	0/1	0/1		0/1	0/1					0/1	ν 1	0/1	0/1	0/1	
bus	Scale									x10	×10	×10	×10	×10	×10	×10	×10	×10	×10	×10	×10	×10	×10	×10							×1			V/A	Α/N Z	4/N	¥N N		N/A	N/A					Ψ/Z	A/N	A/N	N/A	N/A	
Modbus	Address	0101	0102	0103	0104	1010	0162	0163	0164	0105	0106	0107	0108	0109	0110	0111	0112	0113	0114	0115	0116	0117	0118	0119	0120	0121	0123	0107	0125	0126	0127	0128	0129	0165	0166	0168	0169	0170	0171	0172	0173	0174	0175	0176	0177	0178	0180	0181	0182	-
N2 Metaeve	netasys	ADF 44	ADF 45	ADF 46	ADF 47	0000	BD 31	BD 32	BD 33	ADF 48	ADF 49	ADE 50	ADF 51	ADF 52	ADF 53	ADF 54	ADF 55	ADF 56	ADF 57	ADF 58	ADF 59	ADF 60	ADF 61	ADF 62	ADF 63	AD 1 04	ADF 66	ADE 67	ADF 68	ADF 69	ADF 70	ADF 71	ADF 72	BD 34	BD 35	BD 30	BD 38	BD 39	BD 40	BD 41	BD 42	BD 43	BD 44	BD 45	BD 46	BD 4/ BD 48	BD 49	BD 50	BD 51	,
LON SNVT Type		f (51)	f (51)	count f (51)	+	(32)	(95)	(92)		SNVT_count_f (51)	SNVT_count_f (51)	CNIVT count f (E1)	f (51)	count f (51)	f (51)	count f (51)	f (51)	-	_count_f (51)	f (51)	count_f (51)	f (51)	f (51)	f (51)	f (51)	(10)	SNVT count f (51)	f (54)	count f (51)	f (51)	f (51)	f (51)	f (51)	switch (95)	SNVT_switch (95)	SNVT switch (95)	(92)	(92)	(92)	SNVT_switch (95)				SNVT_switch (95)	(95)	SNV I SWITCH (95)	(95)	switch (95)	(92)	(00)
LON Profile		nviYTS02p003	nviYTS02p004	nviYTS02p005	nviY1 S02p006	11VIT 1 SUZDOO7	nviY1S02p008	nviYTS02p009	nviYTS02p010	nvoYTS02p011	nvoYTS02p012	NOVTCO00013	nvoYTS02p013	PVOYTS02p015	nvoYTS02p016	nvoYTS02p017	nvoYTS02p018	nvoYTS02p019	nvoYTS02p020	nvoYTS02p021	nvoYTS02p022	nvoYTS02p023	nvoYTS02p024	nvoYTS02p025	nvoYTS02p026	120d2021Yovn	1502p026	OSOSOSOSOSOSOSOSOSOSOSOSOSOSOSOSOSOSOS	nvoYTS02p031	nvoYTS02p032	nvoYTS02p033	nvoYTS02p034	nvoYTS02p035	nvoYTS02p036	nvoYTS02p037	MOVE I SUZPUSO	nvoYTS02p040	nvoYTS02p041	nvoYTS02p042	nvoYTS02p043	nvoYTS02p044	nvoYTS02p045	nvoYTS02p046	nvoYTS02p047	nvoYTS02p048	nvoYTS02p049	nvoYTS02n051	nvoYTS02p052		
BACnet Object		YT2_S02_	YT2_S02_P04	S02_P05	SUZ PU6	S02 P07	Y12_S02_P08	S02	SOS	YT2_S02_P11	YT2_S02_P12	VT2 C02 D12	YT2 S02 F13	SOS	YT2 S02 P16		YT2_S02_P18	YT2_S02_P19	S02_	YT2_S02_P21	- 1	S02	S02	S02		200	VT2 S02 P29	200	S02	S02	S02_	YT2_S02_P34	S02_	YT2 S02	YT2	VT2 S02 P39	S02	S02	S02	YT2_S02_	YT2_S02	S02_		S02	YT2_S02_	Y12 S02 P49	VT2 S02	YT2 S02	S02	, ק
Object	Typ/Ins	AV101	AV102	AV103	AV104	0 0 0	BV102	BV103	BV104	AV105	AV106	7/1/1/7	AV108	AV109	AV110	AV111	AV112	AV113	AV114	AV115	AV116	AV117	AV118	AV119	AV120	AV 121	AV 122	VV124	AV 125	AV126	AV127	AV128	AV129	BV105	BV106	BV107	BV109	BV110	BV111	BV112	BV113	BV114	BV115	BV116	BV117	BV118 BV119	BV120	BV121	BV122	;
Page	Ref	P03	P04	P05	P06	200	80d	P09	P10	P11	P12	D13	P14	P15	P16	P17	P18	P19	P20	P21	P22	P23	P24	P25	P26	P2/	P29	020	P31	P32	P33	P34	P35	P36	P37	P39	P40	P41	P42	P43	P44	P45	P46	P47	P48	P49	P51	P52	P53	3

4 of 5

Table 16 - YVAA E-Link communications data map (cont'd)

ing age	ASCII Page	York Talk Point	P	LON SNVT Type	N2	Modbus	snq	Engineering Units		Point List Code: S = Standard O = Optional N = Not Available	
3ef	Ref	ıybe	Name		Metasys	Address	Scale	Imperial	S	Point List Description 1 2 3	3 4 5 6 7 8 9
54	BV123	YT2_S02_P54	nvoYTS02p054	SNVT_switch (95)	BD 52	0183	N/A	1/0	0/1	z	88888
22	BV124	YT2_S02_	nvoYTS02p055	SNVT_switch (95)	BD 53	0184	N/A	1/0	0/1	Z	S S S S S
99,	MV101	YT2_ S02_ P56	nvoYTS02p056	SNVT_count_f (51)	ADI 11	0130	×	None	None	Condenser Fan Control Type [1=Std. VSD, 2=Opt VSD, N N 3=Std. Staged, 4=Opt. Staged]	S S S S S
257	MV102	YT2_S02_P57	nvoYTS02p057	SNVT_count_f (51)	ADI 12	0131	×1	None	None	r OL [0=M, 1=Fc, 2=Hy] N N	00000
926	MV103	YT2_ S02_ P58	nvoYTS02p058	SNVT_count_f (51)	ADI 13	0132	×	None	None	Free Cooling Control Programmed, if FC CL or OL N N N N N De-Disabled, 1=OL, 2=CL	0 0 0 0 0
929	MV104	YT2_S02_P59		SNVT_count_f (51)	ADI 14	0133				Z	2 2 2 2
09c	MV105	YT2_S02_P60		SNVT_count_f (51)	ADI 15	0134				2 2 2	Z Z Z Z
-19م	MV106	YT2_S02_P61	nvoYTS02p061	SNVT_count_f (51)	ADI 16	0135				<u> </u>	NNN
962	MV107	YT2_S02_P62		SNVT_count_f (51)	ADI 17	0136				V N N	NNNN
63	MV108	YT2_S02_			ADI 18	0137				N N N	NNNN
964	MV109	YT2_S02_P64		SNVT_count_f (51)	ADI 19	0138				N N N	NNNN
965	MV110	YT2_		SNVT_count_f (51)	ADI 20	0139				N N N	NNNN
99,	AV130	YT2_S02_P66	nvoYTS02p066	SNVT_count_f (51)	ADF 73	0140					ZZZZ
67 ح	AV131	YT2_ S02_		SNVT_count_f (51)	ADF 74	0141	×10	None		ZZ	NNSS
.68	AV132	YT2_S02_		SNVT_count_f (51)	ADF 75	0142	×10	None		ssor Kw	NNSS
69	AV133	YT2_			ADF 76	0143	×10	None		Z	z z z
70	AV134	YT2_S02_P70	nvoYTS02p070	SNVT_count_f (51)	ADF 77	0144	×10	None	None	Z	NNSS
771	AV135	YT2_S02_	nvoYTS02p071		ADF 78	0145	×10	Volts	Volts	DC Bus Voltage 2 (Frame E/F)	00000
72	AV136	YT2_S02_P72	nvoYTS02p072	SNVT_count_f (51)	ADF 79	0146				NNN	Z Z Z Z
73	AV137	YT2_S02_		SNVT_count_f (51)	ADF 80	0147				z	z z
774	AV138	YT2_S02_P74		SNVT_count_f (51)	ADF 81	0148					ZZZZ
75	AV139	YT2_S02_P75	nvoYTS02p075	SNVT_count_f (51)	ADF 82	0149				N N N	NNNN
9/	AV140	YT2_S02_P76		SNVT_count_f (51)	ADF 83	0120				V N N	NNNN
77	AV141	YT2_S02_		SNVT_count_f (51)	ADF 84	0151				<u> </u>	NNN
78	AV142	YT2_		SNVT_count_f (51)	ADF 85	0152					ZZZZ
79	AV143	YT2_S02_P79	_	SNVT_count_f (51)	ADF 86	0153				N N N	ZZZZ
80	BV125	YT2_S02_P80	nvoYTS02p080	SNVT_switch (95)	BD 54	0185				N N N	NNNN
81	BV126	YT2_S02_	_	SNVT_switch (95)	BD 55	0186				N N N	NNNN
82	BV127	YT2 S02			BD 56	0187				V N N	NNNN
83	BV128	YT2_S02_	nvoYTS02p083		BD 57	0188				2 2 2	z z
84	BV129	YT2 S02 P84	nvoYTS02p084	SNVT_switch (95)	BD 58	0189	N/A	0/1	0/1	Units [0=Imperial, 1=Metric]	88888
TES											
	NS NO	VTs lised: SNVT	count f (51) and S	ON SNVTs used: SNVT count f (51) and SNVT switch (95). Must	Ani le NO I esti ta	al ink					
Γ	Modbus	scaling factors indic	cated in bold with	an asterisk (*) are use	r configura	ble by a fig	eld techni	cian. if nec	essary.	Modbus scaling factors indicated in bold with an asterisk (*) are user configurable by a field technician, if necessary. All Modbus values are of the twoe SIGNED with the exception of the user configurable by a field technician.	ser configurable values t
2	are all Ut	NSIGNED. Modbu	is function types si	are all UNSIGNED. Modbus function types supported: ENG P03-P0	06 = Types	03, 06, 16	3; ENG P	07-P10 = C	11, 03, 05	16 = Types 03, 06, 16; ENG P07-P10 = 01, 03, 05, 06, 15, 16; ENG P36-P55 & P80-84 = 01, 02, 03	
3	BACnet 6	engineering units s.	hown with an Aste	BACnet engineering units shown with an Asterisk (*) will be assigned	d a BACne	engineer	ing unit ty	a BACnet engineering unit type of 95 - No Units.	No Units.		
4	Status codes: Spinoling spaces	odes: Special displ	lay characters suc	h as ()[]{}/\%<>	are not con	patible wi	th eLink I	V2 formats	. Substitu	Status codes: Special display characters such as () [] { } / \% < > are not compatible with eLink N2 formats. Substitute text strings "-", PCT, GTN will be used. String lengths are limited to 60 total characters, including spaces.	o 60 total characters,
Ī.,	מכנייני	spaces.									

ricial types supported: End Puo-Puo-Puo = Types us, us, 18, End Pu/-10 = U1, us, us, us, us, 18, End Pao-Pao & Pau-64 = U1, uz, us, us, us, us, us, us, us, us, us, us	characters such as () [] {} / \% < > are not compatible with eLink N2 formats. Substitute text strings "-", PCT, GTN will be used. String length				Johnson Controls, Inc.
nction types st in with an Aste	characters suc				

Subject to change without notice.

YVAA YVFA YAGK BAS 8 JAN 2020

Form 201.28-NM1.1 Issue date: 08/06/2021 **SECTION 7 - OPERATION**

Table 16 - YVAA E-Link communications data map (cont'd)

Operational Code Value Manual Override 0 Unifs Schedule Shutdown 2 Unifs Switch of Temote Controlled Shutdown 4 Flow Switch Shutdown 7 Flow Switch Shutdown 7 Serial Number Shutdown 7 NSD Cooling Shutdown 7 Serial Number Shutdown 7 No Run Permissive 11 Anti-Recognic Timer Active 11 System Sunder Off 11 System Running 14 System Sunder Limiting 14 System Sunder Current Limiting 17 BASI/SIN Sound Limiting 22 VSD Persopate Immiting 14 System Shutch Ambient Temp Limiting 24 BASI/SIN Sound Limiting 22 VSD Resopate I Femp Limiting 24 Berinde Make Current Limiting 24 Reinflown Motor Current Limiting 22 Resolut Limiting 22 Resolut Limiting 23 Plaindee Sound Limiting 24 Remote Input Current Limiting<	0000		9000	01100/20
Manual Override 0 Daily Schedule Shutdown 1 Unit Switch Oil Its Warth Oil To Warth Churt Churt Its Warth Oil Its Warth Oil Its Warth Oil Its Warth Oil Its Warth Oil Its Warth Oil Its Warth Oil Its Warth Oil Its Warth Oil Its Warth Oil Its Warth Oil Its Warth Warth Churt Its Warth Warth Oil Its Warth Warth Oil Its Warth Oil Its Warth Warth Oil Its Warth Oil Its Warth Warth Oil Its Warth Oi	le e	Operational Code	Value	FaulVInhibit Code
Daily Schedule Shutdown 1 Remote Controlled Shutdown 4 Flow Switch Shutdown 4 Serial Number Shutdown 6 Serial Number Shutdown 7 Discharge Superheat Recovery (Remote Evaporator) 9 No Run Permissive 11 Anti-Recycle Timer Active 12 System Not Hording 14 System Switch Off 13 System Switch Off 14 System Shutting 15 Basseplate Treasure Limiting 16 Basseplate Teasure Limiting 22 NSD Prechaging 17 Motor Current Limiting 22 VSD Internal Ambient Temp Limiting 22 VSD Internal Ambient Temp Limiting 22 Sound Limiting 22 Sound Limiting 22 Sound Limiting 23 Pulldown Motor Current Limiting 24 Remote Suscind Limiting 26 Remote Suscind Limiting 28 Remote Demand Shuddown 31 Input Current Limiting	33	Manual Override	0	No Fault Code
Unit Switch Off Remote Controlled Shutdown 2	75	Daily Schedule Shutdown	1	Low Ambient Temperature
Finw Switch Shutdown	55	Unit Switch Off	5	High Ambient Temperature
Flow Switch Shutdown	99	Remote Controlled Shutdown	င	Low Chilled Liquid Temperature
Flow Switch Shutdown 5	22		4	VSD Initialization Failure
VSD Cooling Shutdown 7 Serial Number Shutdown 8 Discharge Superheat Recovery (Remote Evaporator) 9 No Bun Permissive 11 Anti-Recycle Timer Active 12 System Switch Off 13 System Switch Off 14 System Switch Off 14 System Switch Off 17 Bischarge Pressure Limiting 16 Suction Pressure Limiting 16 Rack Sins Mobior Current Limiting 17 Rack Sins Mobior Current Limiting 22 VSD Internal Ambient Temp Limiting 22 System Shutting Down 22 VSD Internal Ambient Temp Limiting 22 Sound Limiting 22 Remote Sound Limiting 22 Remote Sound Limiting 23 Pullcown Motor Current Limiting 24 Input Current Limiting 33 Remote Sound Limiting 34 Input Current Limiting 36 Remote Input Current Limiting 36 Remote Input Current Limiting 36 <t< td=""><td>89</td><td>Flow Switch Shutdown</td><td>2</td><td>Low RTC Battery Voltage</td></t<>	89	Flow Switch Shutdown	2	Low RTC Battery Voltage
Serial Number Shutdown 7 Discharge Superheat Recovery (Remote Evaporator) 10 No Run Permissive 11 Anti-Recycle Timer Active 12 System Switch Off 13 System Switch Off 14 System Running 14 System Running 16 Bucklon Pressure Limiting 17 Motor Current Limiting 17 Motor Current Limiting 22 VSD Baselated emp Limiting 22 VSD Precharging 24 VSD Baselated emp Limiting 25 Sound Limiting 28 Pulldown Motor Current Limiting 28 Pulldown Motor Current Limiting 29 Cooling Demand Shuting 29 Cooling Demand Shuting 32 Rexists Sound Limiting 28 Femote Input Current Limiting 34 Imput Current Limiting 34 Remote Input Current Limiting 36 Remote Input Current Limiting 36 Remote Input Current Limiting 44 Pulldown	60	VSD Cooling Shutdown	9	Invalid Number of Compressors Selected
Discharge Superheat Recovery (Remote Evaporator) 9	,0	Serial Number Shutdown	7	VSD Communications Failure
Discharge Superheat Recovery (Remote Evaporator) 10			8	Precharge Low DC Bus Voltage (Unit)
No Run Permissive	.2	Discharge Superheat Recovery (Remote Evaporator)	6	Precharge DC Bus Voltage Imbalance (Unit)
Mo Run Permissive	33		10	High DC Bus Voltage (Unit)
Anti-Recycle Timer Active System Switch Off System Switch Off System Switch Off System Switch Off System Switch Off System Running Discharge Pressure Limiting Discharge Pressure Limiting Back ISSN Wator Current Limiting Free Cooling Free	4	No Run Permissive	11	Low DC Bus Voltage (Unit)
System Switch Off 14 System Norl Running 14 System Norl Running 16 Discharge Pressure Limiting 17 Bound Pressure Limiting 17 Free Cooling 17 Free Cooling 18 Free Cooling 19 BAS/ISN Motor Current Limiting 20 Remote Motor Current Limiting 22 VSD Prechaging 24 VSD Prechaging 27 VSD Prechaging 27 VSD Internal Ambient Temp Limiting 27 BASI/SN Sound Limiting 28 BASI/SN Sound Limiting 29 Pollidown Motor Current Limiting 33 IsN Input Current Limiting 36 IsN Input Current Limiting 36 Pulldown Input Current Limiting 36 Pulldown Input Current Limiting 36 Bennote Input Current Limiting 36 Bennote Input Current Limiting 44 Bennote Input Current Limiting 44 Bennote Input Current Limiting 44 Bennote Inpu	5	Anti-Recycle Timer Active	12	DC Bus Voltage Imbalance (Unit)
System Not Running 14 System Not Punning 15 System Running 16 Suction Pressure Limiting 17 Motor Current Limiting 18 Free Cooling 19 BAS/ISN Motor Current Limiting 22 Ramnote Motor Current Limiting 22 VSD Prechaging 24 VSD Prechaging 24 VSD Baseplate Temp Limiting 25 Sound Limiting 26 BAS/ISN Sound Limiting 27 Remote Sound Limiting 29 Cooling Demand Shutdown 30 Input Current Limiting 33 Roundown Motor Current Limiting 34 Ison Not Current Limiting 34 Ison Not Current Limiting 34 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 34 Sound Limiting 35 Remote Input Current Limiting 34 Remote Input Current Limiting 36 Remote Input Current Limit	9	System Switch Off	13	High VSD Ambient Temperature
System Running 15 Discharge Pressure Limiting 17 Motor Current Limiting 18 Free Cooling 19 BAS/ISN Motor Current Limiting 22 System Shutting Down 23 Sound Limiting 24 BAS/ISN Sound Limiting 25 Sound Limiting 26 BAS/ISN Sound Limiting 26 Sound Limiting 27 Remote Sound Limiting 33 Pulldown Motor Current Limiting 34 IsN Input Current Limiting 34 IsN Input Current Limiting 34 IsN Input Current Limiting 34 Isn Input Current Limiting 34 Isn Input Current Limiting 34 Isn Input Current Limiting 34 Isn Input Current Limiting 35 Isn Input Current Limiting 36 Isn Input Current Limiting 37 Isn Input Current Limiting 38	7	System Not Running	14	Single Phase Input (Unit)
Discharge Pressure Limiting 16 Suction Pressure Limiting 17 Motor Current Limiting 19 Free Cooling 19 RAS/ISN Motor Current Limiting 22 System Shutting Down 23 VSD Precharging 24 VSD Baseplate Temp Limiting 25 VSD Internal Ambient Temp Limiting 27 Remote Sound Limiting 27 Remote Sound Limiting 28 Cooling Demand Shutdown 31 ISN Input Current Limiting 32 Remote Input Current Limiting 34 IsN Input Current Limiting 35 Remote Input Current Limiting 36 Remote Input Current Limiting 37 Remote Input Current Limiting 36 Remote Input Current Limiting 36 Remote Input Current Limiting 36 Remote Input Current Limiting 37 Remote Input Current Limiting 37 Remote Input Current Limiting 38 Remote Input Current Limiting 38 Remote Input Current Limiting 37 Remote Input Current Limiting 38 Remote Input Current Limiting 37 Remote Input Current Limiting 38 Remote Input Cu	8	System Running	15	VSD Power Supply Fault
Suction Pressure Limiting	6	Discharge Pressure Limiting	16	VSD Logic Board Fault
Motor Current Limiting 19	0	Suction Pressure Limiting	17	Motor Current Overload (Hardware)
Free Cooling 19 BAS/ISN Motor Current Limiting 20 BAS/ISN Motor Current Limiting 21 System Shutting Down 22 VSD Baseplate Temp Limiting 23 VSD Baseplate Temp Limiting 24 VSD Baseplate Temp Limiting 25 Sound Limiting 26 BAS/ISN Sound Limiting 27 Remote Sound Limiting 28 Pulldown Motor Current Limiting 31 Input Current Limiting 31 Input Current Limiting 32 Remote Input Current Limiting 34 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 35 Pulldown Input Current Limiting 36 Pulldown Input Current Limiting 37 Pulldown Input Current Limiting 38 Pulldown Inp	_	Motor Current Limiting	18	CT Plug Fault
BAS/ISN Motor Current Limiting	2	Free Cooling	19	
System Shutting Down System Shutting Down System Shutting Down 22 VSD Petabatting Down 23 VSD Petabatting Down 24 VSD Internal Ambient Temp Limiting 25 Sound Limiting 27 BaxSi/SN Sound Limiting 28 BASI/SN Sound Limiting 28 Bound Limiting 29 Collidown Motor Current Limiting 31 ISN Input Current Limiting 32 IsN Input Current Limiting 34 IsN Input Current Limiting 35 Ish Input Current Limiting 36 Ish Input Current Limiting 37 Ish Input Current Limiting 38 Ish Input Current	3	BAS/ISN Motor Current Limiting	20	
System Shutting Down 22 VSD Precharging 23 VSD Baseplate Temp Limiting 24 VSD Internal Ambient Temp Limiting 25 Sound Limiting 26 BAS/ISN Sound Limiting 27 Benotic Sound Limiting 29 Pulldown Motor Current Limiting 29 Cooling Demand Shutdown 30 IsN Input Current Limiting 31 ISN Input Current Limiting 33 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 36 Solution 44 Solution <	4	Remote Motor Current Limiting	21	
VSD Precharging 23 VSD BaseplateT Temp Limiting 24 VSD BaseplateT Temp Limiting 24 Sound Limiting 27 BAS/ISN Sound Limiting 27 Remote Sound Limiting 29 Pullclown Mobro Current Limiting 30 Isput Current Limiting 31 Ison Input Current Limiting 33 Pulldown Input Current Limiting 34 Pull Row Input Current Limiting 34 Pull Row Input Current Limiting 34 Pull Row Input Current Limiting 36 Row Input Current Limiting 36 Row Input Current Limiting 36 Row Input Current Limiting 36 Row Input Current Limiting 37 Row Input Current Limiting 36 Row Input Current Limiting 36 Row Input Current Limiting 37 Row Input Current Limiting	2	System Shutting Down	22	
VSD Baseplate Temp Limiting 24 VSD Internal Ambient Temp Limiting 25 Sound Limiting 27 BAS/ISN Sound Limiting 27 Remote Sound Limiting 28 Pooling Demand Shutdown 31 Input Current Limiting 31 IsN Input Current Limiting 32 Remote Input Current Limiting 35 Pulldown Input Current Limiting 36 Pulldown Input Current Limiting 44 Remote Input Current Limiting 36 Remote Input Current Limiting 37 Remote Input Current Limiting 36 Remote Input Current Limiting 36	9	VSD Precharging	23	
VSD Internal Ambient Temp Limiting 25 Sound Limiting 27 Rex/SN Sound Limiting 28 Pulldown Motor Current Limiting 29 Cooling Demand Shutdown 30 Input Current Limiting 32 Remote Input Current Limiting 33 Remote Input Current Limiting 33 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 44 Remote Input Current Limiting 36 Remote Input Current Limiting 36 Remote Input Current Limiting 36 Remote Input Current Limiting 37 Remote Input Current Limiting 36 Remote Input Current Limiting 37 Remote Input Current Limiting 36 Remote Input Current Limiting 37 Remote Input Current Limiting 36 Remote Input Current Limiting 37 Remote Input Current Limiting 36 Remote Input Current Limiting 37 Remote Input Current Limiting 37 Remote Input Current Limiting 37 <	7	VSD Baseplate Temp Limiting	24	
Sound Limiting 26	8	VSD Internal Ambient Temp Limiting	52	
BAS/ISN Sound Limiting 27	6	Sound Limiting	56	
Remote Sound Limiting 28 Pullidown Motor Current Limiting 31 Input Current Limiting 32 Input Current Limiting 33 Remote Input Current Limiting 34 Pullidown Input Current Limiting 35 Pullidown Input Current Limiting 36 Pullidown Input Current Limiting 37 Pullidown Input Current Limiting 38	0	BAS/ISN Sound Limiting	27	High Discharge Pressure (Software)
Pulldown Motor Current Limiting 29 Cooling Demand Shutdown 30 ISN Input Current Limiting 32 Remote Input Current Limiting 34 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 37 Pulldown Input Current Limiting 38 Pulldown Input Current Limiting 37 Pulldown Input Current Limiting 38 Pulldown	1	Remote Sound Limiting	28	High Differential Oil Pressure
Cooling Demand Shutdown 30 Input Current Limiting 31 Remote Input Current Limiting 33 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 34 Pulldown Input Current Limiting 36 Pulldown Input Current Limiting 36 Pulldown Input Current Limiting 36 Pulldown Input Current Limiting 38 Pulldown Inpu	2	Pulldown Motor Current Limiting	59	Low Differential Oil Pressure
Input Current Limiting 32 ISN Input Current Limiting 33 ISN Input Current Limiting 34 ISN Input Current Limiting 34 ISN Input Current Limiting 34 ISN Input Current Limiting 35 ISN Input Current Limiting 36 ISN Input Current Limiting 37	3	Cooling Demand Shutdown	30	Low Suction Pressure
ISN Input Current Limiting 32 Remote Input Current Limiting 34 Pulldown Input Current Limiting 35 Pulldown Input Current Limiting 36 36 37 38 41 42 42 43 44 45 46 46 46 46 46 46 46 46	4	Input Current Limiting	31	High Discharge Temperature
Remote Input Current Limiting 33 Pulldown Input Current Limiting 34 Section 100	5	ISN Input Current Limiting	32	
Pulldown Input Current Limiting 34 35 36 37 37 38 40 40 41 41 41 42 43 43 44 46 46 47 46 48 49 49 49 40 49 50 50 60 50 61 60 62 63 63 63 64 65 65 65 66 65 67 65 68 65	9	Remote Input Current Limiting	33	Eductor Clog Fault
35 36 37 38 38 38 38 38 38 38	7	Pulldown Input Current Limiting	34	Sensor Failure
36 37 38 39 39 40 40 41 42 43 43 43 44 44 44 46 46 46 46 46 46 46 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48	8		32	Low Motor Current
	6		36	High Motor Temperature
			37	Precharge Low DC Bus Voltage (System, Frame E/F)
			38	Precharge DC Bus Voltage Imbalance (System, Frame E/F)
			39	
			40	Low DC Bus Voltage (System, Frame E/F)
			41	DC Bus Voltage Imbalance (System, Frame E/F)
			45	High Motor Current
	Ī		43	Motor Current Overload (Software)
			44	IGBT Gate Driver Fault
			42	High Baseplate Temperature
			46	Single Phase Input (System, Frame E/F)
			47	VSD Run Signal Fault
			48	High Discharge Pressure (Hardware/HPCO)
			49	Low Suction Suerheat
			20	Control Voltage Fault
			51	Low Discharge Superheat
			52	Low Suction Pressure Smart Freeze
			23	Isolation Valve Failed to Close Warning
7			24	Isolation Valve Failed to Open Fault
			22	High Discharge Pressure Rate
A WIER VACK BAS B IAN 3030	7	OCOC NAT & SAB		Johnson Controls, Inc.

VSD

J2 VSD#1 and J1 VSD#2 connections headers for RS-485 communications to the Variable Speed Drives.

VSD RX and VSD TX LEDs illuminate to indicate the VSD communications activity. U18 is the VSD Port RS-485 Driver Chip. It is socketed to allow field replacement.

Program update

The Application software and BACnet database are stored in the IPU II Flash memory. Copying a new version of software and/or database from the SD Flash card changes the IPU II Flash. The new application software must be named SOFTWARE.ELF. The new BACnet database must be named DATABASE.BIN. These files must be located in the root directory of the SD Flash card. The software can be updated without updating the database. In this case, the existing database will be used with the new software. The database cannot be updated without updating the software. Be sure to allow enough time for the softare to update properly.

To update the program:

- 1. Copy the new software in to the root directory of the SD card.
- 2. Rename this new program file SOFTWARE.ELF.
- 3. Turn the Unit Switch OFF.
- 4. Insert the SD card in to the SD card Reader/Writer slot.
- 5. Press the OPTIONS key and then press the Down Arrow key until the following message is displayed. FLASH CARD UPDATE DISABLED.
- 6. Press the RIGHT ARROW key to change the DISABLED to ENABLED
- 7. Press the ENTER key to start the update. Once pressed the message:

FLASH CARD UPDATING PLEASE WAIT... is displayed until the update has been completed. The keypad and display will not respond during the flash update. After the software is finished updating, the controller will automatically reboot.

8. If an error occurs during the update, an error message will be displayed where XX is the Error Code. See *Table 16 on page 123* for error code definitions.

- 9. After the update is completed and the controller reboots, the keypad and display will return to full-functionality. The SD card may be left in place for datalogging or else replaced with another SD card dedicated for datalogging.
- 10. To remove the SD card, GENTLY press the card inslightly then release the pressure. The card will pop out slightly to allow removal.

Never reset or power down the chiller until the update is finished. Interrupting the flash update procedure can corrupt the program file and render the control board inoperative.

Table 11 - Flash card update error XXXXX

Flash card update error code	Definition
0	Okay
10	Flash card not found.
11	SOFTWARE.ELF file not found
14	SOFTWARE.ELF file larger than expected.
15	RAM to IPU Flash transfer of DATABASE. ELF failed.
16	RAM to IPU Flash transfer of SOFT- WARE.ELF failed.
17	Could not allocate sufficient memory to read or write file.
99	Internal software error.

Data logging

A 2GB SD card (p/n 031-03466-000) may be inserted into the 03478 IPUII SD card slot to record the chiller operating parameters at 5 second intervals. The data is stored in a folder named RMYYYYMM where YYYY is the year and MM is the month the data was recorded. The controller creates a file for each day within this folder with the format YYYYMMDD.csv where DD equals the day of the month in addition to the YY to the year and MM to the month fields. For example: The folder named RM201503 is a folder created in March of 2015. Within this folder would be a file for each day of that month that the datalogging is running. If a review of the History Report shows that an abnormal event occurred on March 3rd at 2:05pm, the user can import the 20150303.csv file into Excel and look at the system parameter details leading up to the 2:05pm event.

SECTION 7 - OPERATION Form 201.28-NM1.1
Issue date: 08/06/2021

Follow all JCI Safety Directives when inserting or removing the SD card since the card is located inside the control cabinet.

To start the Data Logging, insert the SD card into the SD card slot on the 03478 IPUII board. The label on the SD card should be facing outwards.

Once the SD card is inserted and the unit is powered up, press the OPTIONS key. Then press the Down Arrow key to advance to the DATA LOG TO FLASH-CARD selection. Next press the Right Arrow key to select ON then press the ENTER key to start the Data Log. A 2GB SD card will hold about 8 months worth of data. A smaller card may be used that will hold less data but should be tested for compatibility. The controller operating system does not support SD cards larger than 2GB. When the SD card becomes full, the oldest date file is automatically deleted and a new day log file is written in its place.

To stop the data logging and retrieve the SD card, press the OPTION key and then the Down Arrow key to display the DATA LOG TO FLASHCARD option and then use the Right Arrow key to select OFF then press the ENTER key.

Again, follow the JCI Safety Directives to stop the chiller, power off the unit and open the control cabinet door to retrieve the SD card.

Once inside the control cabinet, lightly press in on the SD card and then release the pressure. The SD card should pop out slightly to allow removal. You may then copy the files to a PC for analysis or email the file to someone. The files are saved as a CSV format which can be read by Excel. Below is a sample of some of the data imported from a YCIV Chiller.

Once the file is read in to Excel, you can hide unrelated columns or plot desired parameters to analyze the data.

Invalid number of compressors warning

The INVALID NUMBER OF COMPRESSORS SELECTED warning will occur after the VSD has been initialized, if no jumpers are installed or if more than 1 jumper is installed, "Number of Compressors Select" message is displayed. The following warning message will be displayed indefinitely.

UNIT WARNING: INVALID NUMBER OF COMPRESSORS SELECTED

To clear this warning, both the control panel and VSD control voltage must be turned OFF and the jumpers properly installed in the VSD wiring harness.

These jumpers are factory installed in the wire harness plug and should not require changes.

Invalid serial number warning

If the INVALID SERIAL NUMBER message appears, immediately contact Johnson Controls Product Technical Support. The appearance of this message may mean the chiller has lost important factory programmed information. The serial number can be entered using the SERVICE key.

UNIT WARNING: INVALID SERIAL NUMBER ENTER UNIT SERIAL NUMBER

This status message can be bypassed to view additional messages under the STATUS key by pressing the STATUS key repeatedly to scroll through as many as three STATUS messages that could possibly be displayed at any time.

Unit safeties

Unit safety operation

Unit faults are safeties that cause all running compressors to be shut down, if a safety threshold is exceeded for 3 seconds. Unit faults are recorded in the history buffer along with all data on the unit and system operating conditions. Unit faults are auto reset faults where the unit will be allowed to restart automatically after the fault condition is no longer present. The only exception is any of the VSD related unit faults. If any 3 VSD unit faults occur within 90 minutes, the unit will be locked out on the last fault. A VSD lockout condition requires a manual reset using the system switches. Both system switches must be cycled OFF and ON to clear a VSD unit lockout fault. If a unit safety is in effect, the message will be displayed to the operator when the STATUS key is pressed.

In the descriptions of the fault displays that follow, the fault message will show a YYYYYYY to indicate that a system is in a "FAULT" condition and will restart when the fault clears or LOCKOUT" and will not restart until the operator clears the fault using the keypad.

If a control panel safety occurs after the VSD fault, but before the fault is reset, the control panel fault is an ALL FAULT of the VSD fault, meaning it will be registered as such in the History because it occurred while the VSD was shutting down or while the systems were shut down. All faults do not store operating data at the time of the fault.

If a "VSD" fault occurs during the fault rampdown or while the systems are shut down, the VSD fault will be registered as a new fault. The reason for this is the belief any VSD fault should be registered with a full account of the systems data at the time of the fault.

High ambient temp fault

If the ambient temperature rises above 55°C (131°F), the chiller will shut down with a controlled ramped shutdown. Restart will automatically occur, if demand allows, when temperature falls 1.1°C (2°F) below the cutout (53.9°C [129°F]). This fault cannot cause a lockout. The fault display message will be present only during the time when the ambient temperature is causing a fault condition. The following is a sample display:

UNIT YYYYYYYY HIGH AMBIENT TEMP

The unit will also be inhibited from starting any time the temperature is above 53.9°C (129°F).

Low ambient temp fault

If the ambient temperature falls below the programmable Low Ambient Temp Cutout the chiller will shut down with a controlled ramped shutdown. This fault will only occur if the Low Ambient Cutout is "ENABLED" under the OPTIONS key. Restart can occur, if demand allows, when temperature rises 1.1°C (2°F) above the cutout. This fault cannot cause a lock-out. The fault display message will be present only during the time when the ambient temperature is causing a fault condition. The following is a sample display:

UNIT YYYYYYYY LOW AMBIENT TEMP

The unit is also inhibited from starting any time the temperature is below the cutout plus 1.1°C (2°F).

Low leaving chilled liquid temp fault

The Low Leaving Chilled Liquid Temp Cutout helps to protect the chiller from an evaporator freeze-up should the chilled liquid temp drop below the freeze point. This situation could occur under low flow conditions or if the Micro Panel setpoint values are improperly programmed. Any time the leaving chilled liquid temperature (water or brine) drops below the programmable cutout point, the chiller will fault and shutdown with a controlled ramped shutdown. Restart can occur, if demand allows, when chilled liquid temperature rises 2.2°C (4°F) above the cutout. This fault cannot cause a lockout. The following is a sample shutdown message:

UNIT YYYYYYYY LOW LEAVING CHILLED LIQUID TEMP

The unit is inhibited from starting any time the chilled liquid temperature is below the cutout plus 2.2°C (4°F).

VSD communications failure fault

The VSD Communications Failure is to prevent the unit from trying to run, if the Chiller Control Board never initializes communications with the VSD Logic Board. The unit will also shut down with a controlled ramped shutdown if the Chiller Control Board loses communications with the VSD Logic Board while the chiller is operating.

On power-up, the Chiller Microprocessor Board will attempt to initialize communications with the VSD Logic Board. The control panel will request data from the VSD, which includes the number of compressors and the VSD software version. Once these data points have been received by the Chiller Control Board,

SECTION 7 - OPERATION Form 201.28-NM1.1
Issue date: 08/06/2021

and have been successfully initialized, the Chiller Control Board will not request them again. If the comms connection fails to occur and a reply from the VSD Logic Board does take place in 8 seconds, the Chiller Control Board will prevent the chiller from operating and a fault message will be displayed.

During normal operation, if the control panel Chiller Control Board receives no valid response to messages for 8 seconds, the unit will shut down all compressors on a Comms fault. The Chiller Control Board will continue to send messages to the VSD while faulted. The unit will be inhibited from starting until communications is established. The fault will automatically reset when the Chiller Control Board receives a valid response from the VSD for a data request. The following is an example of a Comms Failure fault message:

UNIT YYYYYYYY VSD COMMUNICATIONS FAILURE

System safeties, faults

System safety (fault) operation

System safeties are faults that cause individual systems to be shut down if a safety threshold is exceeded for 3 seconds. System faults are auto reset faults in that the system will be allowed to restart automatically after the 120 second anti-recycle timer times out. The only exception is after any 3 faults on the same system occur within 90 minutes, that system will be locked out on the last fault. The lockout condition requires a manual reset using the system switch. The respective system switch must be cycled OFF and ON to clear the lockout fault.

When multiple systems are operating and a system fault occurs, the running systems will ramp down and the faulted system will be shut OFF and the previously operating will restart if required after the fault clears and/or the 120 second anti-recycle timer times out.

In the descriptions of the fault displays that follow, the fault message will show a YYYYYYYY to indicate that a system is in a "FAULT" condition and will restart when the fault clears, or "LOCKOUT" and will not restart until the operator clears the fault using the keypad. If a system safety is in effect, the message will be displayed to the operator when the STATUS key is pressed.

In some cases, a control panel fault will occur after a VSD fault, possibly during system shutdown or at some later time. This is known as an "ALL FAULT" and these faults will be recorded as such under the HISTORY information stored at the instant of the primary fault. In some cases, this information may be valuable in troubleshooting the primary fault. An example of the "ALL FAULT" history message as shown in the *All Fault Data on Page 143* under the HISTORY key. When an "ALL FAULT" occurs, associated history information will not be stored. If an additional fault does not occur, the "ALL FAULTS" display will indicate NONE.

In cases where a VSD fault occurs during the ramp-down of a control panel fault (that is, low suction pressure, low water temp, and so on), the VSD fault will be stored as a new fault with the associated fault information stored at the instant the VSD fault occurred (that is, IGBT Gate Drive, Single Phase Input, VSD CT Plug, and so on). The control panel fault that occurred before the VSD fault will be stored with the associated complete data related to the fault as a numerically lower numbered history in the history buffers.

High discharge pressure cutout (software) fault

The High Discharge Pressure Cutout is a software fault. A system will fault and shut down with a controlled ramped shutdown on high discharge pressure when the discharge pressure rises above 22.4 barg (325 psig) for 0.5 seconds. The system will be allowed to restart when the discharge pressure falls to 20.3 barg (295 psig). The system will also be inhibited from starting if the pressure is above 20.3 barg (295 psig). The following is the fault message for this safety:

SYS X YYYYYYYY HIGH DISCHARGE PRESSURE

The X indicates the system and YYYYYYYY indicates the system is in a FAULT condition and will restart when the 120 second anti-recycle timer times out, or LOCKOUT and does not restart until the operator clears the fault using the keypad.

High discharge pressure cutout (HPCO) (hardware) fault

The mechanical high pressure cutout protects the system from experiencing dangerously high discharge pressure. A system will fault and shut down immediately when the mechanical high pressure cutout contacts open. The fault occurs immediately and does not wait 3 seconds, which is common in most system faults.

The HPCO is wired in series with the VSD Run Signal and will only be checked by the Chiller Control Board when the system is running. The mechanical cutout opens at 23.2 barg \pm 0.55 barg (337 psig \pm 8 psig) and closes at 17.4 barg \pm 0.69 barg (252 psig \pm 10 psig). The following is the Status display fault message for this system:

SYS X YYYYYYYY HPCO FAULT

The X indicates the system and YYYYYYY indicates the system is in a "FAULT" condition and will restart when the 120 second anti-recycle timer times out or "LOCKOUT" and will not restart until the operator clears the fault using the keypad.

Low suction pressure cutout (software) fault

If the system attempts to run with a low refrigerant charge, the programmable "Low Suction Pressure Cutout" protects the chiller from an evaporator freeze-up. The cutout is ignored at the system start to allow initial programmable "Suction Pressure Startup Bypass Time".

Immediately after the Suction Pressure Startup Bypass Time has expired, the Suction Pressure Cutout is linearly ramped to allow the programmed Suction Pressure Startup ramp the Bypass Time, from 10% to 100% of the programmed Suction Pressure Cutout, as explained below.

If at any time during the ramp, the suction pressure falls below the ramped Suction Pressure Cutout, the system will shut down. If at any time after the ramp, the suction pressure falls below the programmable Suction Pressure Cutout, the system will shut down. This causes a lockout on the 3rd fault in 90 minutes.

Following is the system message, where X is the system number.

SYS X YYYYYYYY LOW SUCTION PRESSURE

Low suction pressure smart freeze fault

For R-134a and R-513A refrigeration sytem:

Suction Pressure Override Threshold = Suction Pressure Cutout in psig + 1.7 psig

This safety fault is set when the Suction Pressure < programmable Suction Pressure Override Threshold, longer than the programmable Smart Freeze Timer.

This safety fault is released when the Suction Pressure \geq Suction Pressure Override Threshold. This fault causes a lockout on the 3rd fault in 90 minutes. The following is the system message, where X is the system number.

SYS X YYYYYYYY LOW SUCT PRES SMART FREEZE

Low motor current cutout fault

The Motor Current Cutout shuts the system down with a controlled ramped shutdown when the microprocessor detects the absence of motor current (less than 10% FLA), usually indicating that a compressor is not running. This safety is ignored for the first 10 seconds of operation.

The following is the status display fault message for this safety:

SYS X YYYYYYYY LOW MOTOR CURRENT

The X indicates the system and YYYYYYY indicates the system is in a "FAULT" condition and will restart when the 120 second anti-recycle timer times out or "LOCKOUT" and will not restart until the operator clears the fault using the keypad.

High differential oil pressure cutout fault

The High Differential Oil Pressure Cutout protects the compressor from low oil flow and insufficient lubrication, possibly from a dirty oil filter. A system will fault and shut down with a controlled ramped shutdown when its Discharge to Oil Differential Pressure rises above the cutout of 4.48 barg (65 psid). This safety is ignored for the first 90 seconds of run time. This safety measures the pressure differential between discharge and oil pressure, which is the pressure drop across the oil filter. The following is the Status display fault message for this safety:

SYS X YYYYYYYY HIGH DIFF OIL PRESSURE

The X indicates the system and YYYYYYY indicates the system is in a "FAULT" condition and will restart when the 120 second anti-recycle timer times out or "LOCKOUT" and will not restart until the operator clears the fault using the keypad.

SECTION 7 - OPERATION Form 201.28-NM1.1
Issue date: 08/06/2021

Low differential oil pressure cutout fault

The Low Differential Oil Pressure Cutout protects the compressor from low oil flow and insufficient lubrication. A system will fault and shut down with a controlled ramped shutdown when it's differential between oil and suction pressure falls below the cutout. This safety ensures that the compressor is pumping sufficiently to push oil through the oil cooling circuit and through the internal compressor lubrication system. The following is the Status display fault message for this safety:

SYS X YYYYYYYY LOW DIFF OIL PRESSURE

The X indicates the system and YYYYYYY indicates the system is in a "FAULT" condition and will restart when the 120 second anti-recycle timer times out or "LOCKOUT" and will not restart until the operator clears the fault using the keypad.

The safety is ignored for the first 60 seconds of run time. After the first 60 seconds of operation, the cutout is linearly ramped from 0 barg to 2.09 barg (0 psid to 30 psid) in 5 to 10 minutes based on ambient temperature. See the following table for the ramp times for the given ambient temperatures.

Table 17 - Low differential oil pressure cutout

Ambient temperature	Ramp time
more than 10°C (50°F)	5 min
more than 7.2°C (45°F)	6 min
more than 4.4°C (40°F)	7 min
more than 1.6°C (35°F)	8 min
more than 1.1°C (30°F)	9 min
more than or equal to 1.1°C (30°F)	10 min

A 30 second safety bypass below 50 Hz is employed during rampdown. The bypass is primarily needed under conditions where another compressor is being brought on and the running compressor is being ramped down to 5 Hz to add the additional compressor due to load requirements. Under these conditions, the slow speed of the running compressors cause the oil differential to become very low, especially if the water temperature is high and the suction pressure is high. The bypass ensures the compressors will not trip on a nuisance low oil differential fault.

High discharge temperature cutout fault

The High Discharge Temperature Cutout protects the motor and compressor from overheating. A system will fault and shut down with a controlled ramped shutdown when its Discharge Temperature rises above 121°C (250°F). A system will also be inhibited from starting if the discharge temperature is above 93°C (200°F). The following is the Status display fault message for this safety:

SYS X YYYYYYYY HIGH DISCHARGE TEMP

The X indicates the system and YYYYYYY indicates the system is in a "FAULT" condition and will restart when the 120 second anti-recycle timer times out or "LOCKOUT" and will not restart until the operator clears the fault using the keypad.

Low discharge superheat cutout fault

The Low Discharge Superheat safety helps protect the compressor from liquid floodback through the economizer line due to a high flashtank level. It also helps protect the compressor from excessive oil in circulation due to excess oil charge in the system. Excessive oil in circulation brings back liquid refrigerant which is entrained in the oil. The liquid then drops out once it enters the compressor.

The safety is ignored for the first 10 minutes of operation if the system economizer feed valve is closed (0%) and for 5 minutes of operation if the economizer feed valve is open greater than 0%. If the discharge superheat falls below 2.8°C (5.0°F) for 5 minutes under either condition, the system will shut down.

The X indicates the system and YYYYYYY indicates the system is in a "FAULT" condition and will restart when the 120 second anti-recycle timer times out or "LOCKOUT" and will not restart until the operator clears the fault using the keypad.

Discharge pressure load limiting/unloading

Discharge pressure load limiting protects the condenser from experiencing dangerously high pressures. A system is permitted to load normally as long as the discharge pressure is below the High Discharge Pressure Cutout minus 20 psig. Between Cutout minus 20 psig and Cutout minus 15 psig loading is inhibited even though increased loading may be required. Between Cutout minus 15 psig and the Discharge Pressure Cutout, forced unloading is performed every 2 seconds according to the following table.

SECTION 7 - OPERATION

7

The discharge pressure unload point is fixed at 255 psig.

Form 201.28-NM1.1

Issue date: 08/06/2021

Table 18 - Discharge pressure load limiting/unloading

Discharge pressure	Unloading
Discharge Pressure Cut- out- 20 psig and Discharge Pressure Cutout- 15 psig	0 Hz
Discharge Pressure Cutout- 13.5 psig	1 Hz
Discharge Pressure Cutout- 12 psig	2 Hz
Discharge Pressure Cutout- 10.5 psig	3 Hz
Discharge Pressure Cutout- 9 psig	4 Hz
Discharge Pressure Cutout- 7.5 psig	5 Hz
Discharge Pressure Cutout- 6 psig	6 Hz
Discharge Pressure Cutout- 4.5 psig	7 Hz
Discharge Pressure Cutout- 3 psig	8 Hz
Discharge Pressure Cutout- 1.5 psig	9 Hz
Discharge Pressure Cutout- 0 psig	10 Hz

Suction pressure load limiting/unloading

Suction pressure load limiting helps to protect the evaporator from freezing. A system is permitted to load normally as long as the Suction Pressure is above the "Suction Pressure Cutout + 2.6 psig". Between "Suction Pressure Cutout + 2.6 psig" and the "Suction Pressure Cutout + 1.7 psig", loading is inhibited, even though increased loading is required.

Between the "Suction Pressure Cutout + 1.7 psig" and "Suction Pressure Cutout", forced unloading is performed every 2 seconds according to *Table 19 on page 129*. This situation would occur if the suction pressure cutout transient override control is in effect (See *Low Suction Pressure Cutout (Software) Fault on Page 127*). The suction pressure cutout is programmed under the PROGRAM key. The default Suction Pressure Cutout is set at 26.1 psig.

Suction pressure load limiting is active at startup, to only prevent loading of the compressors. Suction pressure limit unloading will not occur until the system run time reaches 5 minutes of operation to allow the system to stabilize.

R-134A	
Suction pressure	Unloading
Suction Pressure is between "Cutout +2.60 psig" and "Cutout +1.70 psig"	0 Hz
Suction Pressure Cutout+1.53 psig	1 Hz
Suction Pressure Cutout+1.36 psig	2 Hz
Suction Pressure Cutout+1.19 psig	3 Hz
Suction Pressure Cutout+1.02 psig	4 Hz
Suction Pressure Cutout+0.85 psig	5 Hz
Suction Pressure Cutout+0.68 psig	6 Hz
Suction Pressure Cutout+0.51 psig	7 Hz
Suction Pressure Cutout+0.34 psig	8 Hz
Suction Pressure Cutout+0.17 psig	9 Hz
Suction Pressure Cutout	10 Hz
R-513A	
Suction pressure	Unloading
Suction Pressure is between "Cutout +2.70 psig" and "Cutout +1.80 psig"	0 Hz
Suction Pressure Cutout+1.62 psig	1 Hz
Suction Pressure Cutout+1.44 psig	2 Hz
Suction Pressure Cutout+1.26 psig	3 Hz
Suction Pressure Cutout+1.08 psig	4 Hz
Suction Pressure Cutout+0.90 psig	5 Hz
Suction Pressure Cutout+0.72 psig	6 Hz
Suction Pressure Cutout+0.54 psig	7 Hz
Suction Pressure Cutout+0.36 psig	8 Hz
Suction Pressure Cutout+0.18 psig	9 Hz
Suction Pressure Cutout	10 Hz

Sensor failure cutout fault

The Sensor Failure Cutout prevents the system from running when a critical sensor (transducer, level sensor, or motor winding temp sensor) is not functioning properly and reading out of range. This safety is checked at startup and will prevent the system from running if one of the sensors has failed.

The sensor failure safety will also fault and shutdown a system while in operation, if a safety threshold is exceeded or a sensor reads out of range (high or low). Following is the Status display fault message.

SYS X YYYYYYYY SENSOR FAILURE: ZZZZZZZZZZZZZ

SECTION 7 - OPERATION Form 201.28-NM1.1
Issue date: 08/06/2021

The X indicates the specific system. YYYYYYYY will either indicate the system is in a "FAULT" condition and will restart when the fault clears, or "LOCKOUT" after 3 faults and will not restart until the operator clears the fault using the keypad.

ZZZZZZZZZZZ indicates the failed sensor as follows:

- SUCT PRESS
- OIL PRESS
- DSCH PRESS
- MOTOR TEMP X *

The Unit Setup Mode allows a specific motor temperature sensor to be ignored, if it fails. The start inhibit thresholds for each sensor are shown in the following table.

Table 20 - Start inhibit sensor thresholds

Sensor	Low threshold	High threshold
Suction Transducer	0.3 VDC	4.7 VDC
Oil Transducer	0.3 VDC	4.7 VDC
Discharge Transducer	0.3 VDC	4.7 VDC
Motor Temp. Sensor	0°C (0°F)	116°C (240°F)

High motor temperature cutout fault

The High Motor Temperature Cutout prevents a compressor from running when its motor temperature is too high. A system will fault and shut down when any compressor motor temperature sensor rises above 121°C (250°F). The system will be inhibited from starting if its motor temperatures sensors indicate temperatures above 116°C (240°F). If any single temperature sensor is being ignored under the Unit Set-up Mode, that sensor will not be utilized when evaluating motor temperature. The following is a sample Status display fault message:

SYS X YYYYYYYY HIGH MOTOR TEMP

The X indicates the system and YYYYYYY indicates the system is in a "FAULT" condition and will restart when the fault clears or "LOCKOUT" and will not restart until the operator clears the fault using the keypad.

System control voltage cutout fault

The System Control Voltage Cutout alerts the operator the 115 VAC Control voltage to one of the systems is missing. This could be due to a system fuse that has been removed or is blown. The affected system will fault and shut down immediately when the 115 VAC supply is lost.

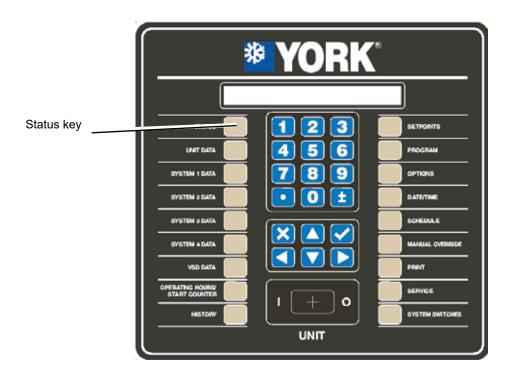
The safety will "not" shut down a system if the UNIT switch is OFF, which electrically removes the 115 VAC to "all" systems. The safety is only used to indicate a situation where a single system is missing the 115 VAC. The safety will not cause a lockout and the system fault will reset when power is returned. The following is a sample message:

SYS X YYYYYYYY CONTROL VOLTAGE

The X indicates the system and YYYYYYY indicates the system is in a "FAULT" condition and will restart when the fault clears or "LOCKOUT" and will not restart until the operator clears the fault using the keypad.

Eductor clog fault

To sense a loss of oil return to the compressor, an eductor clog detection safety is utilized. The safety monitors the temperature of the line between the eductor and the suction line.


The control algorithm looks at the eductor line temperature once a second. At start, a clog timer is set at 600 seconds. If the eductor line temperature is less than the saturated suction temperature plus 5.5°C (10°F) each time the control circuit looks at the temperature, the clog timer is reset to 600 seconds.

If the eductor line temperatures is greater than the saturated suction temperature plus 5.5°C (10°F), the clog timer is decremented one second. If the temperature remains above the saturated suction temperature plus 5.5°C (10°F) for 600 seconds, the clog timer will count to "0" and the system will shut down and lock out. The status fault will indicate an eductor clog fault.

EDUCTOR CLOG FAULT

Whenever this fault occurs, the eductor filter should be changed. The clog timer resets to 600 seconds whenever the control algorithm sees the eductor line temperature is less than the saturated suction pressure plus 5.5°C (10°F). This prevents nuisance eductor clog faults.

Section 8 - Micropanel

LD10605

Status key operation

The STATUS key displays the current chiller or system operational status. The messages displayed include running status, cooling demand, system faults, unit faults, VSD faults, unit warnings, external device status, load limiting, anti-recycle timer, status of unit/system switches, and a number of other messages. Pressing the STATUS key will enable the operator to view the current status of the chiller. The display will show one message relating to the "highest priority" information as determined by the microprocessor. There are three types of status data, which may appear on the display:

- · General status messages
- Unit safeties
- System safeties

When power is first applied to the control panel, the following message displaying YORK International Corporation, the EPROM version, date, and time will be displayed for 2 seconds, followed by the appropriate general status message:

(C)2004 YORK INTERNATIONAL CORPORATION C.XXX.XXX 18-SEPT-2010 12:45: AM

Unit status messages occupy 2 lines of the Status message display. If no unit status message applies, individual status messages for each system will be displayed.

Any time the STATUS key is pressed or after the EPROM message disappears at power-up, a status display indicating chiller or system status will appear.

Multiple STATUS messages may appear and can be viewed by pressing the STATUS key repeatedly to allow scrolling through as many as three STATUS messages, which could possibly be displayed at any time on a 2 compressor chiller.

Examples of the status messages are shown in the next topic.

General status messages

UNIT STATUS MANUAL OVERRIDE

This message indicates the chiller is operating in MANUAL OVERRIDE mode. This message is a priority message and cannot be overridden by any other STATUS message. When in Manual Override, no other status message will ever be present.

SECTION 8 - MICROPANEL Form 201.28-NM1.1
Issue date: 08/06/2021

UNIT STATUS UNIT SWITCH OFF SHUTDOWN

This message indicates the UNIT SWITCH is in the OFF position and not allowing the unit to run.

UNIT STATUS DAILY SCHEDULE SHUTDOWN

This message indicates that either the daily or holiday schedule programmed is keeping the chiller from running.

UNIT STATUS REMOTE CONTROLLED SHUTDOWN

This message indicates that either an ISN or RCC has turned the chiller OFF and is not allowing it to run.

UNIT STATUS FLOW SWITCH SHUTDOWN

This message indicates the flow switch is not allowing the chiller to run. There is a 1 second delay on this safety to ensure the flow switch did not momentarily open.

UNIT STATUS VSD COOLING SHUTDOWN

This message indicates the chiller is shutdown, but running all the condenser fans, VSD glycol pump, and VSD fan in an effort to bring the internal VSD ambient temperature down to an acceptable level before allowing the chiller to start.

SYS X REMOTE RUN CONTACT IS OPEN

This message indicates the remote start / stop contact between 2 and 15 or 2 and 16 of the 1TB terminal block is open. There is a 1 second delay on this safety to ensure the remote contacts did not momentarily open.

SYS X SYSTEM SWITCH IS OFF

This message indicates the system switch (software using keypad) is turned OFF. The system will not be allowed to run until the system switch is turned ON using the keypad.

SYS X NOT RUNNING

This message indicates the system is not running because the chilled liquid is below the setpoint or the micro has not loaded the lead system far enough into the loading sequence to bring the lag system ON. This

message will be displayed on the lag system until the loading sequence is ready for the lag system to start.

SYS X COOLING DEMAND SHUTDOWN

This message is only displayed in the Normal Shutdown History display to indicate a capacity control shutdown.

SYS X COMPRESSOR RUNNING

This message indicates the system is running as a result of cooling demand.

SYS X SHUTTING DOWN

The compressor shutting down message indicates the respective system is ramping down in speed before shutting OFF. This message is displayed after the software run signal is disabled until the VSD notifies the Chiller Control Board the compressor is no longer running.

SYS X ANTI-RECYCLE TIMER = XXX SEC

This message indicates the amount of time left on the respective system anti-recycle timer and the system is unable to start until the timer times out.

SYS X DISCHARGE PRESSURE LIMITING

The Discharge Pressure Limiting message indicates the discharge pressure load limit or discharge pressure unloading is in effect.

SYS X SUCTION PRESSURE LIMITING

The Suction Pressure Limiting message indicates the suction pressure load limit or suction pressure unloading is in effect.

SYS X MOTOR TEMP LIMITING

The Motor Temp Limiting message indicates the motor temp load limit or motor temp unloading is in effect.

SYS X MOTOR CURRENT LIMITING

The motor current limiting message indicates the motor current load limit or motor current unloading is in effect.

SYS X PULLDOWN MOTOR CURRENT LIMITING

The pulldown motor current limiting message indicates the pulldown motor current load limit or pulldown motor current unloading is in effect based on the programmed setpoint.

SYS X ISN CURRENT LIMITING

The ISN Current Limiting message indicates the motor current load limit or motor current unloading is in effect through the use of the YORKTalk setpoint.

SYS X REMOTE MOTOR CURRENT LIMITING

The Remote Motor Current Limiting message indicates the motor current load limit or motor current unloading is in effect through the use of the remote setpoint offset. The setpoint may be offset using a remote voltage or a current signal. The remote current limit must be activated for this function to operate.

SYS X VSD BASEPLATE TEMP LIMITING

The VSD Baseplate Temp Limiting message indicates the VSD Baseplate temp is high and load limit or unloading is in effect.

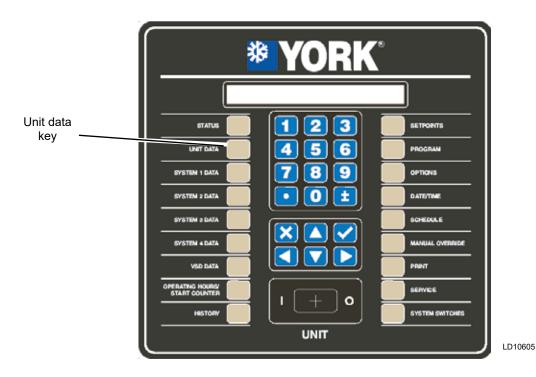
SYS X VSD INTERNAL AMBIENT TEMP LIMITING

The VSD Internal Ambient Temp Limiting message indicates the VSD internal ambient temp is high and load limit or unloading is in effect.

SYS X SOUND LIMITING

The sound limiting message indicates the sound load limit is in effect based on the locally programmed sound limit from the keypad. The sound limit must be activated for this function to operate.

SYS X ISN SOUND LIMITING


The ISN sound limiting message indicates the sound load limit is in effect based on the ISN transmitted sound limit setpoint. The sound limit must be activated for this function to operate.

SYS X REMOTE SOUND LIMITING

The Remote sound limiting message indicates the sound load limit is in effect based on the Remote controlled sound limit setpoint. The setpoint may be offset using a remote voltage or current signal. The sound limit option must be activated for this function to operate.

SECTION 8 - MICROPANEL Form 201.28-NM1.1
Issue date: 08/06/2021

Unit data key

General

The UNIT DATA key provides the user with displays of unit temperatures, and unit related data. Displays can be selected by repeatedly pressing the UNIT DATA key or the ▲ or ▼ Arrow Keys.

Unit data key operation

The first key press displays Evaporator Leaving and Return Chilled Liquid Temperatures.

UNIT CHILLED LIQUID LEAVING = XXX.X °F ENTERING = XXX.X °F

The next key press of the UNIT DATA key or the ▼ (ARROW) key displays the ambient air temperature.

UNIT OUTSIDE AMBIENT AIR TEMP = XXX.X °F

The next key press will display the time remaining on the load and unload timers.

The next key press displays the error in temperature between the actual leaving chilled liquid temperature and the setpoint temperature. The display also shows the rate of change of the chilled liquid temperature.

UNIT TEMP ERROR = XXX.X °F RATE = XXX.X °F/M

The next key press displays the system designated as the lead system and the Flow Switch status (ON or OFF).

UNIT LEAD SYSTEM NUMBER = X FLOW SWITCH = XXX

The next key press displays the status of the evaporator pump and heater, where XXX is either ON or OFF.

The next key press displays the status of Active Remote Control.

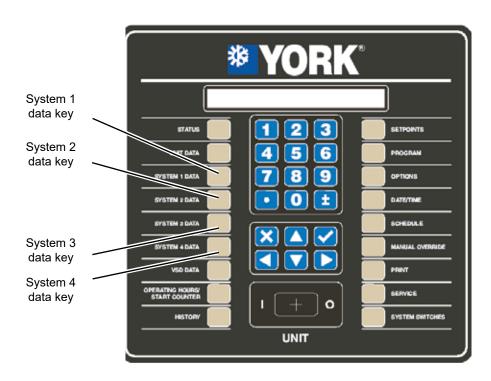
UNIT ACTIVE REMOTE CONTROL = XXXXXX TYPE: RCC ISN CURR TEMP SOUND

XXXXX is either ACTIVE or NONE.

If no remote keys are active, the items on the second line are all blanked out. Any remote items that are active will be displayed, while the inactive items will be blanked out.

6

The types of remote control are listed as follows:


- NONE No remote control is actively controlling the chiller; however, remote monitoring by a remote device may still be active.
- RCC A Remote Control Center is providing remote control. The chiller is in remote mode.
- ISN YorkTalk using ISN. The chiller in remote mode.
- CURR Remote Current Limiting is enabled.
- TEMP Remote Temperature Reset is enabled.
- SOUND Remote Sound Limiting is enabled.

The next key press displays the sound limit values as set under the PROGRAM key by the Local, ISN, and the Remote Sound Limit Inputs. Any sound limits that are inactive will display XXX instead of a numeric value.

UNIT SOUND LIMIT LOCAL = XXX %
ISN = XXX REMOTE = XXX %

SECTION 8 - MICROPANEL Form 201.28-NM1.1
Issue date: 08/06/2021

System data keys 1 through 4

LD10605

General

The data keys provide the user with many displays of individual system temperatures, pressures, and other operating data. These keys have multiple displays, which can be seen by repeatedly pressing the SYSTEM DATA or the ▲ or ▼ (Arrow) keys. An explanation of each key and its messages is provided.

System 1 data key operation

The SYSTEM 1 DATA key provides the user with access to System 1 operating parameters. The following is a list of the data in the order in which it appears.

The first key press of the SYSTEM X DATA key displays all of the measured system pressures (oil and discharge).

SYS 1 PRESSURES OIL = XXXX PSIG
DISCHARGE = XXXX PSIG

The second key press of the SYSTEM DATA key or the ▼ (DOWN ARROW) key displays system suction and condenser liquid pressure.

SYS 1 PRESSURES SUCTION = XXXX PSIG

CONDENSER LIQUID = XXXX PSIG

The next key press displays system oil and eductor temperatures.

SYS 1 TEMPERATURES OIL = XXX.X °F
EDUCTOR = XXX.X °F

The next key press displays system condenser liquid temperature, liquid line subcooling and saturated discharge temperature on the liquid line.

SYS 1 CONDENSER LIQUID TEMP = XXX.X °F SUBCOOLING = XXX.X SAT TEMP = XXX.X °F

The next key press displays discharge temperature, discharge superheat and saturated discharge pressure at the compressor.

SYS 1 DISCHARGE TEMP = XXX.X °F SUPERHEAT = XXX.X SAT TEMP = XXX.X °F

The next key press displays the System 1 motor thermistor temperatures.

If any motor temp sensor is being ignored, (selectable under Unit Set-up Mode), that sensor's value will be displayed as XXXXX.

The next key press displays the compressor speed in % (0 to 100%) and the compressor heater status (ON or OFF).

SYS 1 COMPRESSOR

SPEED = XXX.X % HEATER = XXX

The next key press indicates the flash tank level low/high and the economizer valve % open.

SYS 1

FLASH TANK LEVEL = XXX.X % ECONOMIZER VALVE = XXX.X %

The next key press displays the condenser liquid line subcooling and the drain valve position.

SYS 1 CONDENSER SUBCOOLING = XXX.X °F
CONDENSER DRAIN VALVE = XXX.X %

The next key press indicates the number of condenser fans steps that are enabled (1 to 4), if the fans are not operating on a VSD.

SYS 1

CONDENSER FANS ON = X

If the fans are controlled by an optional VSD, the display will indicate fan speed signal control voltage to the VSD and the fan speed (0 to 100%).

SYS 1

CONDENSER FANS ON = X VSD FAN SPEED = XX.X V = XXX % The next key press will indicate the state of the optional VI solenoids where XXX indicates ON or OFF.

SYS 1

VI STEP SOLENOID 1 = XXX VI STEP SOLENOID 2 = XXX

The next key press displays the system run time in days, hours, minutes, and seconds.

SYS 1 RUN TIME

XX DAYS XX HOURS XX MINUTES XX SECONDS

The next key press indicates the status of the RUN Relay where XXX is ON or OFF, the status of the RUN Permissive signal (flow switch/remote start/stop circuit 2 and 15 of 1TB, SYS 1) or 2 and 16 of 1TB, SYS 2) and whether the internal software is telling the system to run (ON or OFF).

SYS 1 RUN SIGNALS RUN PERM = XXX RELAY = XXX SOFTWARE = XXX

System 2 data key operation

System 2 keys function the same as the SYSTEM 1 DATA key except that it displays data for System 2.

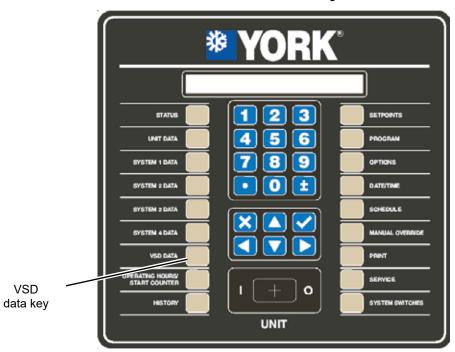
On a 2 compressor system, the SYSTEM 3 and SYSTEM 4 data keys will display the following messages:

SYS 3 DATA NOT AVAILABLE

SYS 4 DATA NOT AVAILABLE

SECTION 8 - MICROPANEL Form 201.28-NM1.1 Issue date: 08/06/2021

Sensor displays


Table 21 on page 138 lists all the sensors attached to the control board associated with system data keys. The minimum and maximum values displayed on the micro display are provided.

If values exceed the limits in the table, a < (less than) or > (more than) sign will be display along with the minimum or maximum value.

Table 21 - Sensor min/max outputs

	System sensor		
Sensor/input	Туре	Minimum value	Maximum value
Suction Pressure	Transducer	0.0 psig (0 barg)	125.0 psig (8.62 barg)
Condenser Liquid Pressure	Transducer	0.0 psig (0 barg)	400.0 psig (27.6 barg)
Discharge Pressure	Transducer	0.0 psig (0 barg)	400.0 psig (27.6 barg)
Oil Pressure	Transducer	0.0 psig (0 barg)	400.0 psig (27.6 barg)
Flash Tank Level	Switch	Low	High
Condenser Liquid Temp	Thermistor	-4.1°F (-20.06°C)	155.6°F (68.67°C)
Leaving Chilled Liquid Temp	Thermistor	-19.1°F (-28.49°C)	110.2°F (43.44°C)
Return Chilled Liquid Temp	Thermistor	-19.1°F (-28.49°C)	110.2°F (43.44°C)
Eductor Temp	Thermistor	-4.1°F (-20.06°C)	132.8°F (56.00°C)
Ambient Air Temp	Thermistor	-14.6°F (-25.89°C)	137.9°F (58.83°C)
Compressor Motor Temp	Thermistor	-30.2°F (-34.56°C)	302.0°F (150.00°C)
Discharge Temp	Thermistor	40.3°F (4.61°C)	302.6°F (150.33°C)
Pomoto Tomo Pocot	4 mA to 20 mA, 0 VDC to 10 VDC,	0%	100%
Remote Temp Reset	0 mA to 20 mA or 2 VDC to 10 VDC	0.70	100%
Remote Current Limit	4 mA to 20 mA, 0 VDC to 10 VDC,	0%	100%
Nemote Odnent Limit	0 mA to 20 mA or 2 VDC to 10 VDC	U 70	100 /0
Remote Sound Limit	4 mA to 20 mA, 0 VDC to 10 VDC,	0%	100%
Tromote Godina Limit	0 mA to 20 mA or 2 VDC to 10 VDC	0 70	10070

VSD data key

LD10605

General

The VSD DATA key provides the user with displays of VSD temperatures, voltages, currents, and other operating data. This key has multiple displays, which can be seen by repeatedly pressing the VSD DATA or the ▲ or ▼ (Arrow) keys. An explanation of each message is provided.

VSD data key operation

The first VSD DATA key press displays the actual VSD Output Frequency and Command Frequency.

VSD FREQUENCY ACTUAL = XXX.X HZ

COMMAND = XXX.X HZ

The second key press of the VSD DATA key or the ▼ (ARROW) key displays the calculated compressor % FLA and measured motor currents in amps for systems 1 and 2. When measuring motor current keep in mind that measuring inverter PWM current is difficult and meter error can be significant.

VSD COMP 1 = XXX AMPS = XXX %FLA

COMP 2 = XXX AMPS = XXX %FLA

The next key press displays the current limit values set locally on the panel under the PROGRAM key, remotely by an ISN, and remotely by the Current Limit input. Any current limits that are inactive will display "XXX" instead of a numeric value.

VSD CURRENT LIMIT LOCAL = XXX %FLA
ISN = XXX REMOTE = XXX %FLA

The next key press displays DC Bus voltage.

VSD DC BUS VOLTAGE = XXX VDC

The next key press displays the Control Panel/VSD Internal Ambient Temperature and VSD Cooling Pump/Fan Status. YYY will indicate ON or OFF.

VSD INTERNAL AMBIENT TEMP = XXX.X °F
COOLING SYSTEM STATUS = YYY

The next key press displays the IGBT highest baseplate temperature.

VSD IGBT BASEPLATE TEMPS T1=XXX°F
T2 = XXX °F

The next key press displays the state of the Precharge signal, where XXX is either ON or OFF.

VSD PRECHARGE SIGNAL = XXX

The next key press displays the setting of the VSD's 105% FLA overload potentiometer for Compressor #1 and 2. The settings are determined by the adjustment of the overload potentiometers on the VSD Logic Board. These pots are factory set and should not require changing unless the circuit board is replaced.

VSD COMP 1 MOTOR OVERLOAD = XXX AMPS
COMP 2 MOTOR OVERLOAD = XXX AMPS

 SECTION 8 - MICROPANEL
 Form 201.28-NM1.1

 Issue date: 08/06/2021

Table 22 - Compressor motor overload settings

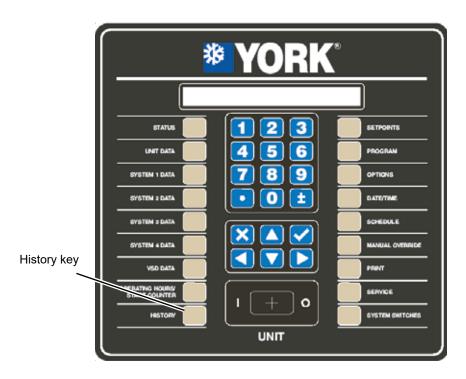
Model		380 V - 60 Hz		400 V - 50 Hz		460 V- 60 Hz (see note 1)	
		Sys # 1	Sys # 2	Sys # 1	Sys # 2	Sys # 1	Sys # 2
50/60 Hz tons	50/60 Hz kW	OL setting	OL setting	OL setting	OL setting	OL setting	OL setting
YVAA0153	YVAA0543	225	225	225	225	175	175
YVAA0165	YVAA0565	225	225	225	225	175	175
YVAA0178	YVAA0588	225	225	225	225	175	175
YVAA0183	YVAA0643	283	236	283	231	225	175
YVAA0195	YVAA0665	283	236	283	231	225	175
YVAA0198	YVAA0688	283	236	283	231	225	175
YVAA0200	YVAA0700	300	300	283	283	236	236
YVAA0213	YVAA0743	283	283	283	283	225	225
YVAA0215	YVAA0765	283	283	283	283	225	225
YVAA0218	YVAA0788	283	283	283	283	225	225
YVAA0233	YVAA0843	338	300	338	283	283	236
YVAA0245	YVAA0865	338	300	338	283	283	236
YVAA0248	YVAA0888	338	300	338	283	283	236
YVAA0263	YVAA0943	338	338	338	338	283	283
YVAA0273	YVAA0963	338	338	338	338	283	283
YVAA0275	YVAA0965	338	338	338	338	283	283
YVAA0278	YVAA0988	334	334	317	317	276	276
YVAA0295	YVAA1015	412	334	412	317	392	276
YVAA0303	YVAA1093	412	334	412	317	392	276
YVAA0305	YVAA1065	412	334	412	317	392	276
YVAA0308	YVAA1088	412	334	412	317	392	276
YVAA0318	YVAA1188	412	334	412	317	392	276
YVAA0323	YVAA1143	412	412	412	412	392	392
YVAA0333	YVAA1173	412	412	412	412	392	392
YVAA0343	YVAA1193	412	412	412	412	392	392
YVAA0345	YVAA1215	412	412	412	412	392	392
YVAA0368	YVAA1288	720	338	720	338	590	283
1 VAAU300	1 VAA 1200	720	330	720	330	480*	203
YVAA0373	YVAA1343	720	338	720	338	590 480*	283
YVAA0375	YVAA1315	720	338	720	338	590 480*	283
YVAA0398	YVAA1388	720	412	720	412	590	392
		, 20				480* 590	002
YVAA0413	YVAA1443	720	412	720	412	480*	392
YVAA0425	YVAA1515	720	412	720	412	590 480*	392
YVAA0428	YVAA1488	720	412	720	412	590 480*	392
YVAA0443	YVAA1543	720	720	720	720	590	590
						480* 590	480* 590
YVAA0475	YVAA1665	720	720	720	720	480*	480*
YVAA0483	YVAA1693	720	720	720	720	590 480*	590 480*
YVAA0500	YVAA1700	720	720	720	720	590	590
		. =0	. = 0	. =0	· <u>- </u>	480*	480*
YVAA0523	YVAA1843	720	720	720	720	590 480*	590 480*

^{*} Applies to VSD Frame D Plus models, PIN 16 = L. Refer to Chiller Nameplate.

Operating hours/ Start counter key

Operating hours/Start counter key

LD10605


Compressor operating hours and compressor starts are displayed with a single key press. The maximum value for both hours and starts is 99,999, at which point they will roll over to 0.

A single display is available under this key and is displayed as follows.

HOURS 1=XXXXX, 2=XXXXX START 1=XXXXX, 2=XXXXX

SECTION 8 - MICROPANEL Form 201.28-NM1.1
Issue date: 08/06/2021

History key

LD10605

History key operation

The HISTORY key provides the user access to many unit and system operating parameters captured at the instant a unit or system safety (fault) shutdown occurs. The history buffer will also capture system data at the time of normal shutdowns such as cycling shutdowns. When the HISTORY key is pressed the following screen is displayed:

The ◀ and ▶ (ARROW) keys allow choosing between NORMAL SHUTDOWNS and FAULT SHUTDOWNS. Fault shutdowns provide information on safety shutdowns, while "Normal" shutdowns provide chiller cycling information on temperature (demand), cycling, remote, system switch, and so on, shutdowns that are non-safety related shutdowns. Once the selection is made, the ✓ (ENTER) key must be pressed to enter the selection.

Normal shutdowns history

If the NORMAL SHUTDOWNS history is selected, the following screen will be displayed:

 XX is the normal shutdown number. The display provides date and time of the shutdown and the reason for the cycling shutdown (YYY....).

The operator can view any of the stored 20 single display normal shutdown history buffers. History buffer number 1 provides the most recent shutdown information and buffer number 20 is the oldest safety shutdown information saved. The ◀ and ▶ (ARROW) keys allow scrolling between each of the history buffers. The ▶ (ARROW) key scrolls to the next normal history shutdown and the ◀ (ARROW) key scrolls to the previous normal history shutdown.

The following display is displayed on a normal shutdown due to shutdown on lack of cooling demand.

NORM HIST XX 18-JUN-2004 10:34:58 AM SYS X COOLING DEMAND SHUTDOWN

Fault shutdowns history

If the FAULT SHUTDOWNS history is selected, the following screen will be displayed:

XX is the FAULT HISTORY shutdown number. The display will provide the date, time, and a description of the specific type of fault that occurred (YYY....).

The operator can view any of the stored 10 fault history buffers. History buffer number 1 provides the most recent safety shutdown information and buffer number 10 is the oldest safety shutdown information saved. The ◀ and ▶ arrow keys allow scrolling between each of the FAULT HIST buffers 1 through 10. The ▲ (UP) and ▼ (DOWN) arrow keys can be used to scroll forwards and backwards through the data in a specific history buffer, once it is displayed.

There is a large amount of data provided under each history. Rather than scroll sequentially through the data in a history, which is possible using the ▼ arrow key, the use of a combination of the \triangleleft , \triangleright , \triangle , and ▼ arrow keys allows fast scrolling to specific data the user desires to view. To use this feature, the user needs to be aware the ◀ and ▶ arrow keys allow scrolling to the top of the data subgroups. Once a specific history is selected, the history data is divided under the subgroups of Unit Data, VSD Data, System Data, Hours / Starts, Setpoints, Options, and Program data. The ◀ and ▶ arrow keys allow moving to the first display under the next or previous subgroup at any time. Once the first display of a subgroup is displayed, the **△**, and **▼** arrow keys allow scrolling though the data in the subgroup. The ▼ arrow key allows scrolling though the data from first to last. When the last piece of data is displayed, the next press of the ▼ arrow key scrolls to the first piece of data in the next subgroup. The ▲ arrow key allows going to the previous display.

Listed below is a description of the fault data displays and their meaning. Data will be displayed in a specific order starting with the Status Display (System Faults only), Fault Display, All Fault Display, Unit Data, VSD Data, System Data, Operating Hours/Starts, Setpoints, Options, and Program Values at the time of the fault.

Status fault type

SYS X COMPRESSOR RUNNING
SYS X YYYYYYYY HIGH DIFF OIL PRESSURE

This message indicates the type of system fault. This screen is skipped if a UNIT Fault caused the shutdown.

Unit fault type

UNIT FAULT

LOW AMBIENT TEMP

This message indicates the type of unit fault. This screen is skipped if a SYSTEM Fault caused the shutdown.

All fault data

The ALL FAULT display indicates whether a fault occurred while the unit is shutting down on another fault.

If a control panel fault occurred while the unit is shutting down on a VSD fault before it is reset, the control panel fault is an ALL FAULT of the VSD fault.

If another VSD fault occurs while the unit is shutting down on a VSD fault, the next VSD fault will be registered as an ALL FAULT of the VSD fault.

If a VSD fault occurs during the ramp down shutdown of a control panel fault, the VSD fault is registered as a new fault, not an ALL FAULT.

XX is the history number, YYY is the ALL FAULT description, ZZ is the ALL FAULT number and WW is the total number of All Faults for the current history. Sometimes, multiple faults may occur during the shutdown and multiple displays will be observed when scrolling through the data using the ▼ arrow. In most cases, the ALL FAULT display will indicate NONE. The ALL FAULT display will only indicate the cause of the fault. No additional chiller information will be displayed under the ALL FAULT, since a snapshot of all chiller data was taken at the time of the first fault.

Unit data

Evaporator leaving and entering chilled liquid temperatures

UNIT CHILLED LIQUID LEAVING = XXX.X °F ENTERING = XXX.X °F

This message indicates the leaving and entering chilled liquid temperatures at the time of the fault.

Ambient air temperature

UNIT

OUTSIDE AMBIENT AIR TEMP = XXX.X °F

This message indicates the ambient air temperature at the time of the fault.

SECTION 8 - MICROPANEL Form 201.28-NM1.1
Issue date: 08/06/2021

Load/unload timers

UNIT LOAD TIMER = XXX SEC UNLOAD TIMER = XXX SEC

This message indicates remaining time on the load and unload timers at the time of the fault.

Chilled liquid temperature error and rate of change

UNIT TEMP ERROR = XXX.X °F

RATE = XXX.X °F/M

This message indicates the temperature error between the actual and the programmed setpoint at the time of the fault and the rate of temperature change.

Programmed lead system selection and flow switch status

UNIT LEAD SYSTEM NUMBER = X
FLOW SWITCH = XXX

This message indicates the designated lead system at the time of the fault and whether the flow switch was ON (Closed) or OFF (Open) at the time of the fault.

Evaporator pump and evaporator heater status

UNIT EVAP PUMP RUN = XXX
EVAP HEATER = XXX

This message indicates the status of the evaporator pump and the evaporator heater at the time of the fault. XXX indicates ON or OFF.

Active remote control status

UNIT ACTIVE REMOTE CONTROL = XXXXXX

This message indicates whether the system was operating under Active Remote Control (RCC, ISN, LOAD, TEMP, or SOUND) or standard control (NONE) at the time of the fault.

UNIT SOUND LIMIT LOCAL = XXX %

ISN = XXX REMOTE = XXX %

This message indicates that sound limiting was in effect, the amount, and whether it was local or remotely limited.

VSD data

VSD actual and command frequency

VSD FREQUENCY ACTUAL = XXX.X HZ

COMMAND = XXX.X HZ

This message indicates the VSD actual operating frequency and the command frequency at the time of the fault. Actual and command may not match due to load/unload timers, limitation of 1 Hz per load/unload increment, and to allowable acceleration/deceleration of the motor.

Compressor amps and %FLA

The message indicates the compressor %FLA and motor currents for systems 1 and 2 at the time of the fault.

COMP 1 = XXX AMPS = XXX %FLA COMP 2 = XXX AMPS = XXX %FLA

VSD current limit

VSD CURRENT LIMIT LOCAL = XXX %FLA
ISN = XXX REMOTE = XXX %FLA

This message displays the current limit values as set locally, by an ISN, or a remote current limiting input at the time of the fault.

DC BUS voltage

VSD DC BUS VOLTAGE = XXX VDC

This message displays the DC Bus voltage at the time of the fault.

VSD internal ambient temp

VSD INTERNAL AMBIENT TEMP = XXX.X °F
COOLING SYSTEM STATUS = YYY

This message displays the VSD/Microprocessor internal ambient cabinet temperature and the cooling system status (ON or OFF) at the time of the fault.

IGBT baseplate temperature

VSD IGBT BASEPLATE TEMPS T1 = XXX °F
T2 = XXX °F

This message displays the IGBT highest baseplate temperature for 2 and 3 compressor units at the time of the fault. 4 compressor units display temperatures for 1/3 (T1) and 2/4 (T2).

Precharge signal status and VSD cooling status

VSD PRECHARGE SIGNAL = XXX

This display provides the state of the precharge signal, where XXX is either ON or OFF at the time of the fault.

Compressor #1 and #2, 105% FLA motor overload current setting

VSD COMP 1 MOTOR OVERLOAD = XXX AMPS
COMP 2 MOTOR OVERLOAD = XXX AMPS

This message displays the setting of the VSD's 100% FLA potentiometer for Compressor #1 and #2 at the time of the fault.

System data

System #1 pressures

SYS 1 PRESSURES OIL = XXXX PSIG
DISCHARGE = XXXX PSIG

This message displays the measured system oil and discharge pressures at the time of the fault.

SYS 1 PRESSURES SUCTION = XXXX PSIG

CONDENSER LIQUID = XXXX PSIG

This message displays the measured system suction and condenser liquid line pressure at the time of the fault.

System # 1 temperatures

SYS 1 TEMPERATURES OIL=XXX.X°F

EDUCTOR = XXX.X °F

This message displays the measured system oil and eductor temperatures at the time of the fault.

SYS 1 CONDENSER LIQUID TEMP = XXX.X °F SUBCOOLING = XXX.X SAT TEMP = XXX.X °F

This message displays the condenser liquid, liquid line subcooling and saturated discharge temperatures at the time of the fault.

SYS 1 DISCHARGE TEMP = XXX.X °F SUPERHEAT = XXX.X SAT TEMP = XXX.X °F

This message displays the system discharge, discharge superheat and saturated discharge temperatures at the time of the fault.

Compressor speed and heater status

SYS 1 COMPRESSOR SPEED = XXX.X % HEATER = XXX.X °F

This message indicates the compressor speed in % and the heater status at the time of the fault.

System #1 motor temperatures

 SYS 1 MOTOR TEMPS
 T1 = XXX.X °F

 T2 = XXX.X
 T3 = XXX.X °F

This message displays the System 1 motor thermistor temperatures at the time of the fault.

Flash tank level and economizer position

SYS 1 FLASH TANK LEVEL Y 512 ADC ECONOMIZER VALVE = XXX.X %

This message displays the flash tank level and the economizer valve position in % at the time of the fault.

Condenser subcooling and condenser drain valve position

SYS 1 CONDENSER SUBCOOLING = XXX.X °F
CONDENSER DRAIN VALVE = XXX.X %

This message displays the condenser subcooling and the Condenser Drain Valve position at the time of the fault.

Condenser fans

SYS 1 CONDENSER FANS ON = X

SYS 1 CONDENSER FANS ON = X

VSD FAN SPEED XX.X V = XXX %

This message displays the number of condenser fans ON or the optional VSD fan control speed signal to the inverter and the % of full speed.

VI step solenoid

SYS 1 VI STEP SOLENOID 1 = XXX VI STEP SOLENOID 2 = XXX

This message displays whether the VI solenoids were ON or OFF at the time of the fault.

SECTION 8 - MICROPANEL Form 201.28-NM1.1

Issue date: 08/06/2021

Compressor #1 run time

SYS 1 RUN TIME XX DAYS XX HOURS XX MINUTES XX SECONDS

This message displays the system run time since the last start in days, hours, minutes, and seconds at the time of the fault.

System #1 run signals

SYS 1 RUN SIGNALS	RELAY = XXX
RUN PERM = XXX	SOFTWARE = XXX

This message displays the System Run Signal Relay (Relay Output Board) status, Run Permissive Input status, and the Internal Software (microprocessor command) ON/OFF Start status. The status of each will indicate either ON or OFF.

System 2 data

Data for the system 2 at the time of the fault is displayed in the same sequence as the system #1 data.

Compressor operating hours and starts

HOURS 1=XXXXX, 2=XXXXX START 1=XXXXX, 2=XXXXX

This message displays compressor operating hours and compressor starts at the time of the fault.

Chilled liquid setpoint cooling setpoints

SETPOINTS

LOCAL COOLING SETPOINT = XXX.X °F

This message displays the programmed cooling setpoint at the time of the fault.

SETPOINTS LOCAL CONTROL RANGE = +/- X.X °F

This message displays the programmed Control Range at the time of the fault.

Remote setpoint and range

SETPOINTS REMOTE SETPOINT = XXX.X °F REMOTE CONTROL RANGE = +/- X.X °F

This message displays the remote setpoint and Control Range at the time of the fault.

Maximum remote temperature setpoint

SETPOINTS

MAXIMUM REMOTE TEMP RESET = XXX.X °F

This message displays the maximum remote reset programmed at the time of the fault.

Options

Display language

OPTIONS	DISPLAY LANGUAGE
◄ ►	XXXXXXXXXXXXXXXXXX

This message displays the language selected at the time of the fault.

Chilled liquid cooling mode

OPTIONS	CHILLED LIQUID COOLING MODE
∢ ▶	WATER COOLING

This message displays the chilled liquid temperature mode (water or glycol) selected at the time of the fault.

Local/remote control mode

OPTIONS	CHILLED LIQUID COOLING MODE
◄ ►	GLYCOL COOLING

This message indicates whether Local or Remote Control Mode was selected at the time of the fault.

When Remote Control Mode is selected, control of the Chilled Liquid Setpoint is from a remote device such as an ISN/BAS controller.

Display units mode

This message indicates whether SI (°C, barg) or Imperial units (°F, psig) was selected at the time of the fault.

9

System lead/lag control mode

This message indicates the type of lead lag control selected at the time of the fault. Three choices are available:

- Automatic
- · Sys 1 Lead
- · Sys 2 Lead

The default mode will be AUTOMATIC.

Remote temperature reset

This message indicates whether temperature reset was active or disabled at the chiller keypad at the time of the fault and if active, the type of reset signal selected.

If the option is not factory enabled, the option will not appear.

Remote current reset

This message indicates whether remote current reset was active or disabled at the chiller keypad at the time of the fault and if active, the type of reset signal selected.

If the option is not factory enabled, the option will not appear.

Remote sound limit selection

OPTIONS REMOTE SOUND LIMIT INPUT

▼ ► XXXXXXXXXXXX

This message indicates whether remote sound limit was active or disabled at the chiller keypad at the time of the fault and if active, the type of reset signal selected.

If the option is not factory enabled, the option will not appear.

Program values

Suction pressure cutout

PROGRAM
SUCTION PRESSURE CUTOUT =XXX.XPSIG

This message indicates the he suction pressure cutout programmed at the time of the fault.

Low ambient cutout

PROGRAM LOW AMBIENT TEMP CUTOUT = XXX.X °F

This message displays the low ambient temp cutout programmed at the time of the fault.

Low leaving chilled liquid temp cutout

PROGRAM

LEAVING LIQUID TEMP CUTOUT = XXX.X °F

This message displays the low leaving chilled liquid temperature cutout programmed at the time of the fault.

Motor current limit

PROGRAM

MOTOR CURRENT LIMIT = XXX %FLA

This message indicates the motor current limit programmed at the time of the fault.

Pulldown current limit

PROGRAM
PULLDOWN CURRENT LIMIT = XXX %FLA

This message indicates the pulldown current limit programmed at the time of the fault.

Pulldown current limit time

PROGRAM
PULLDOWN CURRENT LIMIT TIME = XXX MIN

This message indicates the pulldown current limit time programmed at the time of the fault.

Condenser subcooling setpoint

PROGRAM
SUBCOOLING SETPOINT = XXX.X °F

This message indicates the liquid subcooling setpoint programmed at the time of the fault.

Unit ID number

PROGRAM
REMOTE UNIT ID NUMBER = X

This indicates the unit ID # programmed at the time of the fault.

SECTION 8 - MICROPANEL Form 201.28-NM1.1 Issue date: 08/06/2021

Sound limit setpoint

PROGRAM
SOUND LIMIT SETPOINT = XXX %

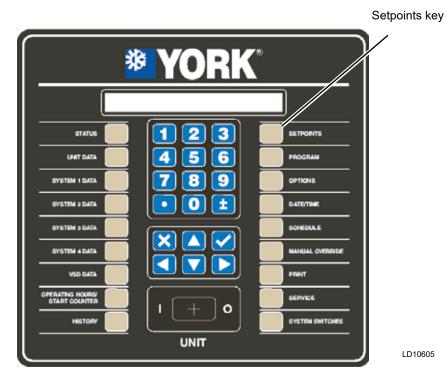
This indicates the sound limit setpoint programmed at the time of the fault, if the sound limit option is activated at the factory. If the option is not factory activated, the display will not appear.

Eductor differential temperature

This message indicates the programmed eductor differential temperature at the time of the fault.

Eductor safety time

This message indicates the eductor safety time programmed at the time of the fault.


Motor temperature unload

PROGRAM ◀DEF XXXXX LO XXXXX HI XXXXX

MOTOR TEMPERATURE UNLOAD = XXX °F

This message indicates the motor temperature programmed at the time of the fault.

Setpoints key

LD10605

Setpoints key operation

Cooling setpoints and ranges may be programmed by pressing the SETPOINTS key. The first set point entry screen will be displayed as shown below. The first line of the display will show the chiller default (DEF), minimum acceptable value (LO) and maximum acceptable value (HI). The second line shows the actual programmed value. Table 23 on page 150 also shows the allowable ranges for the cooling setpoints and Control Ranges. Note that the Imperial units are exact values while the Metric units are only approximate.

LOCAL COOLING SETPOINT = XXX.X °F

Pressing the SETPOINTS key a second time or the ▼ (ARROW) key will display the leaving chilled liquid Control Range, default, and low/high limits.

LOCAL CONTROL RANGE = +/- X.X °F

Pressing the SETPOINTS key or the ▼ (ARROW) key a third time will display the remote setpoint and cooling range. This display automatically updates about every 2 seconds. The following is the remote setpoint message:

SETPOINTS REMOTE SETPOINT = XXX.X °F REMOTE CONTROL RANGE = +/- X.X °F

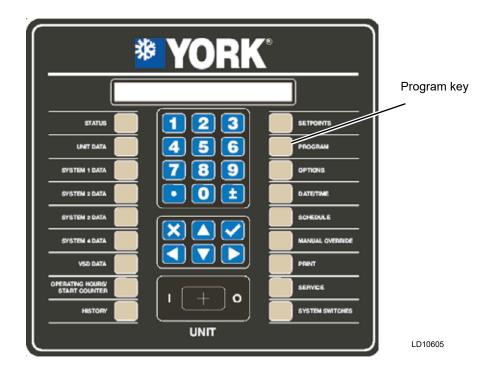
If there is no remote setpoint being utilized, the remote setpoint value will be displayed as XXXXXX and the remote Control Range will display XXX.

Pressing the SETPOINTS key or the Arrow key a fourth time will bring up a screen that allows the Maximum Remote Temperature Reset to be programmed. This message is as follows:

SETPOINTS **◆DEF XXXXX LO XXXXX HI XXXXX** MAXIMUM REMOTE TEMP RESET = XXX.X °F

The values displayed under each of the key presses may be changed by keying in new values and pressing the ✓ (ENTER) key to store the new value into memory. Where more than one value may be keyed in on a display, a portion of the data that does not need updating may be skipped by pressing the ✓ (ENTER) key. The ✓(ENTER) key must also be pressed after the last value in the display to store the data into memory.

SECTION 8 - MICROPANEL Form 201.28-NM1.1 Issue date: 08/06/2021


The \triangle (ARROW) key allows scrolling back through the setpoints displays.

The minimum, maximum, and default values allowed under the SETPOINTS key are provided in *Table 23 on page 150*.

Table 23 - Setpoint limits

Program value	Mode	Low limit	High limit	Default
	10/-4	40.0°F	60.0°F	44.0°F
Logying shilled liquid astroint	Water cooling	4.4°C	15.6°C	6.7°C
Leaving chilled liquid setpoint	Chaol cooling	15.0°F	70.0°F	44.0°F
	Glycol cooling	-9.4°C	15.6°C	6.7°C
		1.5°F	2.5°F	2.0°F
Leaving chilled liquid control range		0.8°C	1.4°C	1.1°C
Marian was assets to make the same assets		2°F	40°F	20°F
Maximum remote temperature reset		1°C	22°C	11°C

Program key

Program key operation

Various operating parameters are programmable by the user. These are modified by pressing the PROGRAM key and then the ✓ (ENTER) key to enter Program Mode. A listing of the limits of the programmable values is shown in *Table 24*. Note that the Imperial units are exact values, while Metric units are only approximate.

The ▲ and ▼ (ARROW) keys are used to scroll through the user programmable values. A value may be changed by keying in the new value and pressing the ✓ (ENTER) key to store the new value in memory. The cursor will be displayed on the screen when a number key is pressed. The first line of each message will indicate the chiller default (DEF) value, lowest acceptable programmable value (LO), and highest acceptable programmable value (HI). The user programmable value is programmed ON in the second line of the message.

When the PROGRAM key is first pressed, the following display will appear indicating the user is in the program mode:

PROGRAM MODE XXXX PRESS ENTER KEY TO CONTINUE

To display the first programmable selection, press the \checkmark (ENTER) key again.

Suction pressure cutout

The suction pressure cutout is protects the chiller from a low refrigerant condition. It also helps protect from a freeze-up due to low or no chilled liquid flow. However, it is only a back-up for a flow switch and cannot protect against an evaporator freeze under many conditions. This cutout is programmable and should generally be programmed for 1.65 barg (24 psig) for chilled water cooling for R-134a system, and 1.93 barg (28 psig) for R-513A system.

For R-134a refrigerant, the cutout is programmable between 1.65 barg and 2.48 barg (24.0 psig and 36.0 psig) in the Water Cooling mode and 0.34 barg and 2.28 barg (5.0 psig and 36.0 psig) in the Glycol Cooling mode. The default value for both modes will be 1.65 barg (24.0 psig).

For R-513A refrigerant, the cutout is programmable between 1.93 barg and 2.80 barg (28.0 psig and 40.7 psig) in the Water Cooling mode and 0.53 barg and 2.80 barg (7.7 psig and 40.7 psig) in the Glycol Cooling mode. The default value for both modes will be 1.93 barg (28.0 psig).

SECTION 8 - MICROPANEL Form 201.28-NM1.1

Issue date: 08/06/2021

Low ambient cutout

The low ambient temp cutout allows programming the outdoor temperature at which it is desired to shut down the chiller to utilize other methods of cooling.

The cutout is programmable between -18.9° C (-2.0° F) and 10.0° C (50° F) with a -3.9° C (25° F) default.

Low leaving liquid temp cutout

The leaving chilled liquid temp cutout is programmed to avoid freezing the evaporator due to excessively low chilled liquid temperatures. The cutout is automatically set at 2.2 °C (36°F) in the Water Cooling mode and is programmable in the Glycol Cooling mode. In the Glycol Cooling Mode, the cutout is programmable from -11.7°C to 2.2°C (11.0°F to 36.0°F) with a default of 2.2°C (36.0°F).

Motor current limit

The motor current limit %FLA is programmable. This allows the microprocessor to limit a system before it faults on high current. The limit point is set at 100%. The unload point is programmable from 30% to 100% with a default of 100%.

Pulldown current limit

The pulldown current limit %FLA is programmable. This allows the microprocessor to limit a system on pulldown limiting for the purpose of peak time energy savings. The limit point is set at 100%. The pulldown limit point is programmable from 30% to 100% with a default of 100%. Be aware when using pulldown motor current limit, the chiller may not be able to load to satisfy temperature demand.

Pulldown current limit time

The pulldown current limit time is programmable. This allows the microprocessor to limit a system on pulldown limiting for a defined period of time for the purpose of peak time energy savings. The pulldown limit point is programmable from 0 to 255 with a default of 0 Min.

Subcooling setpoint

The liquid subcooling superheat setpoint is programmable from 0.0 to 11.1°C (0.0 to 20.0°F) with a 2.8°C (5.0°F) default. The subcooling control is programmed for 2.8°C (5.0°F).

Unit ID number

For purposes of remote communications, multiple chillers may be connected to an RS-485 communications bus. To allow communications to each chiller, a chiller ID number may be programmed into memory. On a single chiller application, the value will be "0".

Sound limit setpoint

The sound limit setpoint is programmable from 0% to 100 % with a 0% default. 0% allows operating up to the full speed capability of the unit with no sound limiting. The sound limit control setting is programmed for 0% unless sound limiting is utilized on the chiller. Sound limiting will only permit the unit to run to a frequency less than the maximum speed capability of the unit. Programming a value of 1% would be the minimum sound limiting that can be programmed and 100% will be the maximum. 100% only allows the unit speed to operate at the minimum frequency. The sound limit % is programmed somewhere between 0% and 100% according to the limiting needed to satisfy the sound requirements of the site. Sound limiting must be utilized in areas sensitive to noise during night-time hours. The sound limit display is only present if the sound limit option is programmed at the factory.

Eductor differential

The eductor temperature differential is programmable from 0°C to 10.0°C (0°F to 50.0°F). The default value is 5.0°F.

The programmed temperature ensures the micro will sense a loss of educator oil flow, if the temperature differential rises. A small differential of 2.8°C (5.0°F) is recommended.

Eductor safety time

EDUCTOR SAFETY TIME = XXXX MIN

The educator safety time allows programming the time period the system is permitted to run if the safety threshold is exceeded. The safety time is programmable for 10 minutes to 1000 minutes with 10 minutes as the default. A minimum safety time is recommended to ensure the compressor is not starved for oil for long periods of time due to the educator circuit not siphoning oil from the evaporator. A minimum time of 10 minutes is recommended as the program point.

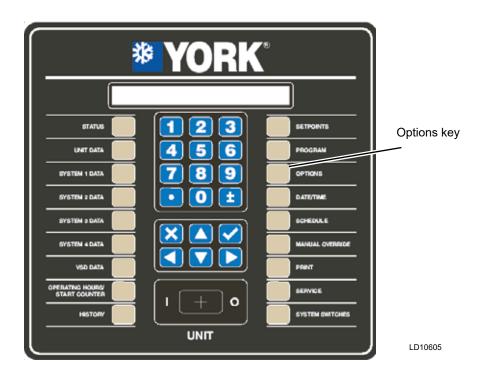
Table 24 - Programmable operating parameters

Motor temperature unload

PROGRAM ■DEF XXXXX LO XXXXX HI XXXXX MOTOR TEMPERATURE UNLOAD = XXX °F

The motor temperature unload is programmable from 65.6°C (150.0°F) to 121.1°C 250.0°F. The default value is 115.5°C (240.0°F). The programmed temperature ensures the micro will sense a rise in motor temperature due to a lack of compressor cooling. If the temperature rises above the programmed threshold, the system will unload the compressor by reducing speed. An unload temperature of 115.5°C (240.0°F) is recommended to ensure the system does provides maximum capacity.

Default values


A listing of the low limits, high limits, and default values for each of the programmable values is noted in each display and can be found in Table 24 on page 153. Note that the Imperial units are exact values while the Metric units are only approximate.

Program value	Mode	Low limit	High limit	Default
	Water	26.1 psig	36.0 psig	26.1 psig
Custian massages subsut	cooling (R-134a)	1.80 barg	2.48 barg	1.80 barg
Suction pressure cutout	Glycol	5.0 psig	36.0 psig	26.1 psig
	cooling (R-134a)	0.34 barg	2.48 barg	1.80 barg
	Water	30.2 psig	40.7 psig	30.2 psig
Custian pressure outsut	cooling (R-513A)	2.08 barg	2.80 barg	2.08 barg
Suction pressure cutout	Glycol	7.7 psig	40.7 psig	30.2 psig
	cooling (R-513A)	0.53 barg	2.80 barg	2.08 barg
Low ambient air tamparatura autaut		-10.0°F	50.0°F	-2.0°F
Low ambient air temperature cutout		-23.3°C	10°C	-18.9°C
	Water			36.0°F
	cooling			2.2°C
Leaving chilled liquid temperature cutout	Glycol	11.0°F	36.0°F	36.0°F
	cooling	-11.7°C	2.2°C	2.2°C
Motor current limit		30% FLA	103% FLA	103% FLA
Pulldown motor current limit		30% FLA	100% FLA	100% FLA
Pulldown motor current limit time		0 min	255 min	0 min
Candanaar subasaling astraint		0.0°F	20.0°F	5.0°F
Condenser subcooling setpoint		0.0°C	11.1°C	2.8°C
Unit ID number		0	7	0
Sound limit setpoint	Sound limit option enabled	0%	100%	0%
		5.0°F	50.0°F	15.0°F
Eductor temperature differential		2.77°C	27.8°C	8.3°C
Eductor safety time		10 min	1000 min	30 min*
Matantana and manager		150.0°F	250.0°F	240.0°F
Motor temperature unload		65.6°C	121.1°C	115.5°C

SECTION 8 - MICROPANEL Form 201.28-NM1.1

Issue date: 08/06/2021

Options key

Options key operation

The OPTIONS key provides the user with a display of unit configuration and the capability to modify the configuration. These options can only be viewed under the OPTIONS key. To view the current options settings, press the OPTIONS key. Each press of the OPTIONS key or press of the ▲ or ▼ (ARROW) keys will scroll to the next option setting. The ◄ and ► (ARROW) keys allow changing the option choices. The ✓ (ENTER) key must be pressed after a selection is made to save the change in memory.

An explanation of each option message is provided.

Display language selection

The display language can be selected for English, Italian, Polish, Hungarian, German, French, Portuguese, and Spanish.

The default language will be English.

Local/remote control mode selection

Local or Remote Control Mode allows the user to select the chilled liquid temperature control mode.

When LOCAL CONTROL mode is selected, chilled liquid control is from the keypad of the chiller. In local mode, a remote device can read system data, but not reset operating parameters.

OPTIONS LOCAL/REMOTE CONTROL MODE

◆ ► LOCAL CONTROL

When REMOTE CONTROL mode is selected, control of the chilled liquid setpoint is from a remote device such as an ISN/BAS controller.

OPTIONS LOCAL/REMOTE CONTROL MODE

▼ ► REMOTE CONTROL

The default mode will be LOCAL CONTROL.

Display units selection

Imperial or SI display units may be selected for data display.

OPTIONS	DISPLAY UNITS
∢ ▶	XXXXXXXXXXXXXXXX

The user may select system operating temperatures and pressures to be displayed in either SI (°C, barg) or Imperial units (°F, psig).

OPTIONS	DISPLAY UNITS
◄ ►	IMPERIAL
OPTIONS	DISPLAY UNITS
∢ ▶	SI

The default mode is IMPERIAL.

System lead/lag control mode selection

The operator may select the type of lead/lag control desired.

OPTIONS	LEAD/LAG CONTROL MODE
∢ ▶	XXXXXXXXXXXXXXXX

In most cases, automatic lead/lag will be selected. When automatic lead/lag is selected, the microprocessor will attempt to balance run time by switching the lead compressor whenever all compressors are shut OFF. If a compressor is not able to run when the microprocessor attempts a start, the microprocessor will select another compressor in an effort to control chilled liquid temperature. Manual lead/lag allows selecting a specific compressor to be the lead.

OPTIONS	LEAD/LAG CONTROL MODE
◄ ▶	AUTOMATIC

The default mode will be AUTOMATIC.

Lag selections of individual systems will appear as:

OPTIONS	LEAD/LAG CONTROL MODE
◆ ►	MANUAL SYS 1 LEAD
OPTIONS	LEAD/LAG CONTROL MODE
◆ ►	MANUAL SYS 2 LEAD

Remote temperature reset selection

Remote temperature reset from an external source may be tied directly into the chiller microprocessor board.

OPTIONS	REMOTE TEMP RESET INPUT
∢ ▶	XXXXXXXXXXXXXXXX

Selections may be made for DISABLED (no signal), 0 VDC to 10 VDC, 2 VDC to 10 VDC, 0 mA to 20 mA, and 4 mA to 20 ma.

OPTIONS	REMOTE TEMP RESET INPUT DISABLED
OPTIONS	REMOTE TEMP RESET INPUT 0.0 TO 10.0 VOLTS DC
OPTIONS ◀ ▶	REMOTE TEMP RESET INPUT 2.0 TO 10.0 VOLTS DC
OPTIONS ◀ ▶	REMOTE TEMP RESET INPUT 0.0 TO 20.0 MILLIAMPS
OPTIONS	REMOTE TEMP RESET INPUT 4.0 TO 20.0 MILLIAMPS

The default setting for Remote Temp Reset is DISABLED. This display will only appear if the remote temperature limit option is enabled under the Unit Setup Mode.

Remote current limit input selection

Remote current limit from an external source may be tied directly into the chiller microprocessor board.

OPTIONS	REMOTE CURRENT LIMIT INPUT	
◄ ►	XXXXXXXXXXXXXXXXXXXXX	

Selections may be made for DISABLED (no signal), 0 VDC to 10 VDC, 2 VDC to 10 VDC, 0 mA to 20 ma, and 4 mA to 20 mA.

OPTIONS ◆ ►	REMOTE CURRENT LIMIT INPUT DISABLED
OPTIONS	REMOTE CURRENT LIMIT INPUT
◀ ▶	0.0 TO 10.0 VOLTS DC
OPTIONS	REMOTE CURRENT LIMIT INPUT
◆ ►	2.0 TO 10 VOLTS DC
OPTIONS	REMOTE CURRENT LIMIT INPUT 0.0 TO 20.0 MILLIAMPS

SECTION 8 - MICROPANEL Form 201.28-NM1.1
Issue date: 08/06/2021

OPTIONS REMOTE CURRENT LIMIT INPUT 4 ▶ 4.0 TO 20.0 MILLIAMPS

The default setting for Remote Current Reset is DISABLED. This display will only appear if the remote current limit option is enabled under the Unit Setup Mode.

Remote sound limit selection

Remote sound limit from an external source may be tied directly into the chiller microprocessor board.

OPTIONS	REMOTE SOUND LIMIT INPUT
∢ ▶	XXXXXXXXXXXXXXXXXXX

Selections may be made for DISABLED (no signal), 0 VDC to 10 VDC, 2 VDC to 10 VDC, 0 mA to 20 mA, and 4 mA to 20 mA.

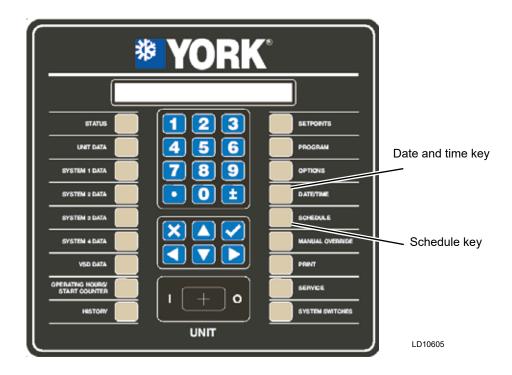
OPTIONS	REMOTE SOUND LIMIT INPUT
◄ ►	DISABLED
OPTIONS	REMOTE SOUND LIMIT INPUT
∢ ▶	0.0 TO 10.0 VOLTS DC
OPTIONS	REMOTE SOUND LIMIT INPUT
∢ ▶	2.0 TO 10.0 VOLTS DC
OPTIONS	REMOTE SOUND LIMIT INPUT
∢ ▶	0.0 TO 20.0 MILLIAMPS
OPTIONS	REMOTE SOUND LIMIT INPUT
◄ ►	4.0 TO 20.0 MILLIAMPS

The default setting for Remote Sound Limit is DISABLED. This display will only appear if the remote sound limit option is enabled under the Unit Setup Mode.

Low ambient cutout enable/disable

The low ambient cutout may be enabled or disabled. When enabled, the chiller will cut OFF when the low ambient cutout is reached. When disabled, the chiller will run at any temperature.

OPTIONS	LOW AMBIENT TEMPERATURE CUTOUT
◄ ►	ENABLED
OPTIONS	LOW AMBIENT TEMPERATURE CUTOUT
◄ ►	DISABLED


The default setting for the low ambient cutout will be ENABLED.

Variable water outlet control enabled/disabled

This option is for the purpose of Edo-Design compliance, the default setting for this option is DISABLED.

OPTIONS	VARIABLE WATER OUTLET CONTROL
◄ ▶	ENABLED
OPTIONS	VARIABLE WATER OUTLET CONTROL
◄ ▶	DISABLED

Date/time and schedule keys

Date/time key operation

When the DATE/TIME key is pressed, the chiller microprocessor will display the date and the time. This feature is useful and required for using the Daily Schedule. It is also a valuable tool for troubleshooting to allow a technician to determine the time of the fault, which is stored in the history memory buffers. When the DATE/TIME key is pressed, the following first display screen will be displayed:

CLOCK FRI 18-JUN-2011 10:15:33 AM DAY OF WEEK ◀ ▶ = XXX

Whenever any changes are made, the \checkmark (ENTER) key must be pressed to store the data.

Pressing the \triangle or \blacktriangledown (Arrow) keys allows scrolling to the next programmed item. Pressing the \blacktriangledown (DOWN ARROW) key scrolls to the next item that can be programmed and the \triangle (UP ARROW) key scrolls to the previous item.

The day of the week is the first display and can be changed by pressing either the ◀ or ► (LEFT OR RIGHT ARROW) key to select the day. After the day is selected, the ✓ (ENTER) key must be pressed to store the data.

CLOCK FRI 18-JUN-2011 10:15:33 AM DAY OF MONTH = XX

Pressing the ▼ (DOWN ARROW) key again scrolls to the day of the month:

CLOCK FRI 18-JUN-2011 10:15:33 AM
DAY OF MONTH = XX

The day of the month can be selected by keying in the numerical value to select the day. After the day of the month is selected, the \checkmark (ENTER) key must be pressed to store the data.

A "0" must be typed in to select dates for days of the 1st through the 9th.

Pressing the ▼ (DOWN ARROW) key again scrolls to month:

CLOCK FRI 18-JUN-2011 10:15:33 AM MONTH ◀ ► = XXX

SECTION 8 - MICROPANEL Form 201.28-NM1.1

Issue date: 08/06/2021

The month can be selected by scrolling through the months with the \triangleleft or \triangleright arrow keys. After the month is selected, the \checkmark (ENTER) key must be pressed to store the data.

Pressing the ▼ (DOWN ARROW) key again scrolls to the year:

CLOCK FRI 18-JUN-2011 10:15:33 AM YEAR = XXXX

The year can be selected by keying in the numerical value to select the year. After the year is selected, the ✓ (ENTER) key must be pressed to store the data.

Pressing the ▼ (DOWN ARROW) key again scrolls to the hour:

CLOCK FRI 18-JUN-2011 10:15:33 AM HOUR = XX

The hour can be selected by keying in the numerical value for the hour. After the hour is selected, the ✓ (ENTER) key must be pressed to store the data.

One or two "0's" must be keyed in for minutes 00 through 09.

Pressing the ▼ (DOWN ARROW) key again scrolls to the minute:

CLOCK FRI 18-JUN-2011 10:15:33 AM MINUTE = XX

The minute can be selected by keying in the numerical value for the hour. After the minute is selected, the \checkmark (ENTER) key must be pressed to store the data.

One or two "0's" must be keyed in for minutes 00 through 09.

Pressing the ▼ (DOWN ARROW) key again scrolls to AM/PM:

CLOCK FRI 18-JUN-2011 10:15:33 AM AM/PM ◀ ► = XX

AM/PM can be selected by pressing the ◀ or ► (ARROW) keys. After the meridian is selected, the ✓(ENTER) key must be pressed to store the data.

Pressing the ▼ (DOWN ARROW) key again scrolls to the time format selection:

CLOCK FRI 18-JUN-2011 10:15:33 AM
TIME FORMAT ◀ ▶ = XXXXXXX

The time format may be displayed in either a 12 hour or 24 hour format. Selection can be changed by pressing the ◀ or ► (ARROW) keys. The ✓ (ENTER) key must be pressed to store the data.

Schedule key operation

The Daily Schedule must be programmed for the unit start and stop times. To set the schedule, press the SCHEDULE key. The display will provide a message allowing access to 2 types of schedule information:

The schedule types are:

- UNIT OPERATING SCHEDULE
- (Default selection)
- SOUND LIMIT SCHEDULE
 (Only if Sound Limiting is enabled by the factory when the option is installed.)

The schedule type (UNIT OPERATING SCHEDULE or SOUND LIMIT SCHEDULE) may be changed by pressing the ◀ (LEFT ARROW) or ▶ (RIGHT ARROW) keys followed by the ✓ (ENTER) key. The selection must be entered by pressing the ✓ (ENTER) key before a schedule display will appear.

Unit operating schedule

The Unit Operating Schedule is used to enable/disable the chiller unit on time of day. The chiller can be enabled and disabled once each day or it can be programmed to run continuously. Any time the daily or holiday schedule shuts the chiller down, the running systems will go through a controlled ramped shutdown. If the UNIT OPERATING SCHEDULE is selected under the CHOOSE SCHEDULE display, the following message will appear:

SCHEDULE UNIT OPERATING

MON START = 06:00 AM STOP = 10:00 PM

The line under the 0 above is the cursor. If the start time is wrong, it can be changed by keying in the new time from the numeric keypad. Once the correct values for the START hour and minute are entered, press

the ✓ (ENTER) key. The cursor will then move to the AM/PM selection. The meridian (AM/PM) value may be changed by the ◀ (LEFT ARROW) or ▶ (RIGHT ARROW) keys and entered by pressing ✓ (ENTER) key. Repeat this process for the STOP time. Once a schedule is entered, the schedule for the next day will appear. The start and stop time of each day may be programmed differently.

To view the schedule without making a change, simply press the SCHEDULE key until the day you wish to view appears. The ▲ (UP ARROW) key will scroll backwards to the previous screen.

If at any time the schedule is changed for Monday, all the other days will change to the new Monday schedule. This means if the Monday times are not applicable for the whole week, then the exceptional days would need to be reprogrammed to the desired schedule.

To program the chiller for 24 hour operation, program the start and stop times of each day of the week for 00:00.

After the SUN (Sunday) schedule appears on the display, a subsequent press of the SCHEDULE or ▲ (UP ARROW) key will display the Holiday schedule. This is a two-part display. The first reads:

SCHEDULE UNIT OPERATING HOL START = 00:00 AM STOP = 00:00 PM

The holiday times may be set using the same procedure as described above for the days of the week. Be sure to press the ✓ (ENTER) key after setting the START and STOP times to save the change in memory. Pressing the SCHEDULE key a second time, the display will show the individual days:

SCHEDULE UNIT OPERATING S M T W T F S HOLIDAY NOTED BY *

The line below the empty space is the cursor and will move to the next or previous empty space when the ◀ (LEFT ARROW) or ▶ (RIGHT ARROW) keys and pressed. To set a day for the Holiday Schedule, the cursor must be moved to the space following the day of the week. The * key is then pressed and an "*" will appear in the space signifying that day as a holiday. The Holiday schedule must be programmed weekly. If there is no holiday, the "*" key is also used to delete the "*". The ✓ (ENTER) key is used to accept the holiday schedule for the entire week.

The HOLIDAY SCHEDULE is a temporary schedule. Once the schedule is executed, the selected holidays will be cleared from memory for the following week.

Sound limit schedule

The SOUND LIMIT SCHEDULE allows setting the day and time when the user desires using the "SILENT NIGHT" factory programmed option to limit chiller loading and fan operation for reduced audible noise in the surrounding area. If the SOUND LIMIT SCHEDULE is selected under the CHOOSE SCHEDULE display, the following message will appear:

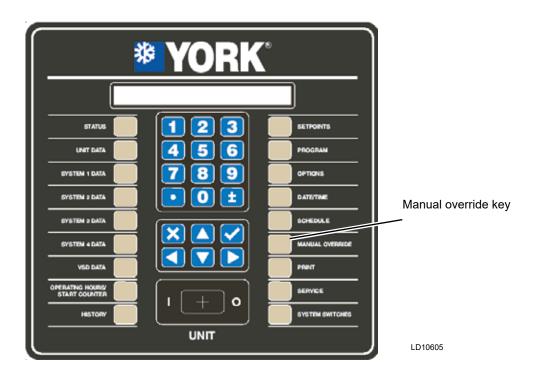
SCHEDULE SOUND LIMIT = XXX %

MON START = 06:00 AM STOP = 10:00 PM

The Sound Limit option can be enabled and disabled once each day or the chiller can be set to run continuously in this mode for sound limiting whenever the chiller is operating. When sound limiting is enabled, the unit will be limited by the Sound Limit setpoint % as set under the PROGRAM key. XXX in the display above will show the Sound Limit Setpoint % programmed under the PROGRAM key. 0% will cause no speed reduction, while 100% only allows running at minimum speed.

The START Time for a specific day (hour and minute) is entered using the same guidelines used for the start/ stop schedules, and press the ✓ (ENTER) key to store it into memory. The cursor will then move to the AM/ PM selection.

The AM/PM selection may be chosen using the ◀ (LEFT ARROW) or ▶ (RIGHT ARROW) keys and pressing ✓ (ENTER) key to store the value.

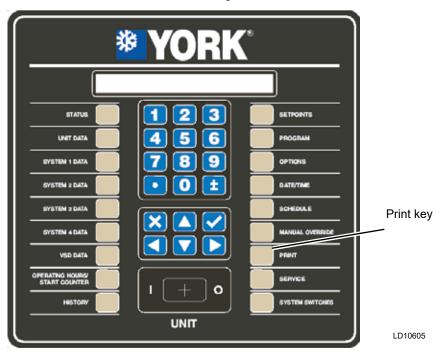

This process is repeated for the STOP time.

Once the schedule for a specific day is programmed and entered, the schedule for the next day will appear. The schedule for each day may be programmed the same or differently.

To view the schedule without changing it, simply press the SCHEDULE key or the ▼ (DOWN ARROW) key until the desired day is displayed. The ▲ (UPARROW) key will scroll backwards to the previous screen.

SECTION 8 - MICROPANEL Form 201.28-NM1.1 Issue date: 08/06/2021

Manual override key


Manual override key operation

If the MANUAL OVERRIDE key is pressed during a schedule shutdown, the STATUS display will display the message below. This indicates that the Daily Schedule is being ignored and the chiller will start when chilled liquid temperature allows, Remote Contacts, UNIT switch and SYSTEM switches permitting. This is a priority message and cannot be overridden by antirecycle messages, fault messages, and so on, when in

the STATUS display mode. Therefore, do not expect to see any other STATUS messages when in the MANUAL OVERRIDE mode. MANUAL OVERRIDE is to only be used in emergencies or for servicing. Manual override mode automatically disables itself after 30 minutes.

MANUAL OVERRIDE

Print key

Print key operation

The PRINT key is used to initiate a printout of current operating data (real time data), a complete history printout of all history (fault) buffers, a printout of all normal shutdowns (compressor cycling, chiller shutdown, and so on), or history (fault) data printout of a specific fault. History Buffer 1 will always be the most recent fault history printout. Printing may also be canceled by selecting the CANCEL PRINTING option. The following message is displayed when the PRINT key is pressed.

PRINT CHOOSE PRINT REPORT **▼** XXXXXXXXXXXXXXXXXXXXXXX

After pressing the PRINT key, the printout type is selected by pressing the ◀ (LEFT ARROW) or ► (RIGHT ARROW) keys until the desired printout is displayed.

The following table shows the available printout types.

Table 25 - Printout types

Printout types		
Operating Data		
(Default Selection)		
All History Buffers		
Normal Shutdowns		
History Buffer 1		
History Buffer 2		
History Buffer 3		
History Buffer 4		
History Buffer 5		
History Buffer 6		
History Buffer 7		
History Buffer 8		
History Buffer 9		
History Buffer 10		
Cancel Printing		

The specific printout is initiated by pressing the \checkmark (ENTER) key.

SECTION 8 - MICROPANEL Form 201.28-NM1.1 Issue date: 08/06/2021

A sample of the Operating Data Printout is included. The operating data printout is a snapshot of current system operating conditions when the printout was selected. The sample shows combined printouts of 2, 3, and 4 circuit units. The actual printout will only show data for the appropriate chiller type.

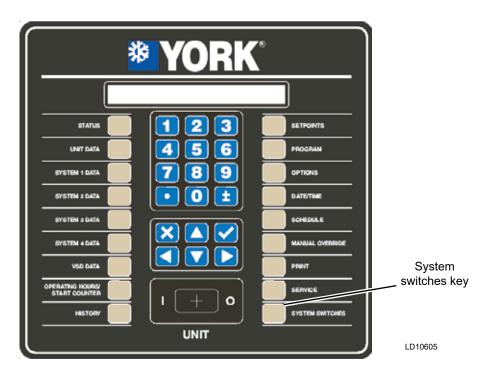
Bold italic text below a line of print is not on the actual printout. Bold italic text indicates information that may not be available on all printouts or is additional information to help explain the difference in a 2/3 or 4 circuit printout.

Operating data printout YORK INTERNATIONAL CORPORATION		
YVAA SCREW CHILLE	R	
OPERATING DATA		
2:04:14 PM 30 DEC	11	
SYS 1	11	
NOT RUNNING		
SYS 2		
COMPRESSOR RUNNING		
OPTIONS		
CHILLED LIQUID	WATER	
LOCAL/REMOTE MODE	REMOTE	
LEAD/LAG CONTROL	AUTOMATIC	
REMOTE TEMP RESET	DISABLED	
REMOTE CURRENT LIMIT	0 TO 10 V	
REMOTE SOUND LIMIT	4 TO 20 MA	
(if Sound Limiting enabled)	4 10 20 MA	
LOW AMBIENT CUTOUT	ENABLED	
PROGRAM VALUES		
SUCT PRESS CUTOUT	44 PSIG	
LOW AMBIENT CUTOUT	25.0 DEGF	
LEAVING LIQUID CUTOUT	36.0 DEGF	
MOTOR CURRENT LIMIT	100 %FLA	
PULLDOWN CURRENT LIMIT	100 %FLA	
PULLDOWN LIMIT TIME 0 MIN		
SUBCOOLING SETPOINT	12.0 DEGF	
UNIT ID NUMBER	0	
SOUND LIMIT SETPOINT	100%	
(if Sound Limiting enabled)		
UNIT DATA		
LEAVING LIQUID TEMP	49.0 DEGF	

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	//////
RETURN LIQUID TEMP	58.2 DEGF
TEMP RATE	XXX.X DEGF/MIN
COOLING RANGE	42.0+/-2.0 DEGF
REMOTE SETPOINT	44.0 DEGF
AMBIENT AIR TEMP	74.8 DEGF
LEAD SYSTEM	SYS 2
FLOW SWITCH	ON
EVAPORATOR PUMP RUN	ON
EVAPORATOR HEATER	OFF
ACTIVE REMOTE CONTROL	NONE
OPERATING HOURS 1=XXXX	XX, $2=XXXXX$
START COUNTER 1=XXXXX,	2=XXXXX
SOFTWARE VERSION	C.ACS.XX.00
VSD DA	ATA
ACTUAL FREQUENCY	XXX.X HZ
COMMAND FREQUENCY	XXX.X HZ
DC BUS VOLTAGE	XXX VDC
INTERNAL AMBIENT TEMP	XXX.X DEGF
COOLING SYSTEM STATUS	XXX
BASEPLATE TEMPS	XXX XXX DEGF
PRECHARGE SIGNAL	XXX
MOTOR OVERLOADS 1/2	XXX XXX AMPS
SOFTWARE VERSION	C.VSD.XX.00
UNIT SERIAL NUMBER	YYYY XXXZZZ
SYSTEM 1	DATA
COMPRESSOR STATUS	OFF
RUN TIME	0- 0- 0- 0 D-H-M-S
MOTOR CURRENT	0AMPS 0 %FLA
SUCTION PRESSURE	125 PSIG
DISCHARGE PRESSURE	131 PSIG
OIL PRESSURE	130 PSIG
CONDENSER LIQUID TEMP	68.4 DEGF
DISCHARGE TEMPERATURE	68.8 DEGF
SAT SUCTION TEMP	71.8 DEGF
SUBCOOLING	3.4 DEGF
SAT DISCHARGE TEMP	74.5 DEGF
DISCHARGE SUPERHEAT	6.3 DEGF
MOTOR TMP	XXX.XXXX.XXXX.XDEGF
COMPRESSOR SPEED	XXX.X %
FLASH TANK LEVEL	> 512 ADC
COND DRAIN % OPEN	XXX.X %
ECONOMIZER % OPEN	XXX.X %
^ ^ ^ ^ ^	

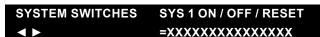
_///////
CONDENSER FANS ON 0
CONDENSER FAN SPEED XXX % (vsd)
COMPRESSOR HEATER ON
VI STEP SOLENOID 1 OFF
VI STEP SOLENOID 2 OFF
RUN PERMISSIVE ON
VSD RUN RELAY OFF
VSD SOFTWARE RUN SIGNAL OFF
SYSTEM 2 DATA
COMPRESSOR STATUS ON
RUN TIME 0-0-15-26 D-H-M-S
MOTOR CURRENT 104 AMPS 87 %FLA
SUCTION PRESSURE 57 PSIG
DISCHARGE PRESSURE 233 PSIG
OIL PRESSURE 218 PSIG
CONDENSER LIQUID TEMP 42.9 DEGF
DISCHARGE TEMPERATURE 145.5 DEGF
SAT CONDENSER TEMP 31.7 DEGF
SUBCOOLING 11.2 DEGF
 SAT DISCHARGE TEMP 112.1 DEGF
DISCHARGE SUPERHEAT 33.4 DEGF
MOTOR TMP XXX.X XXX.X XXX.X DEGF
COMPRESSOR SPEED XXX.X%
FLASH TANK LEVEL
COND DRAIN % OPEN XXX.X%
 ECONOMIZER % OPEN XXX.X%
CONDENSER FANS ON 3
CONDENSER FAN SPEED XXX% (vsd)
COMPRESSOR HEATER OFF
VI STEP SOLENOID 1 OFF
VI STEP SOLENOID 2 OFF
RUN PERMISSIVE ON
VSD RUN RELAY OFF
VSD SOFTWARE RUN SIGNAL OFF
UNIT OPERATING SCHEDULE
S M T W T F S *=HOLIDAY
MON START=00:00AM STOP=00:00AM
TUE START=00:00AM STOP=00:00AM
WED START=00:00AM STOP=00:00AM
THU START=00:00AM STOP=00:00AM
FRI START=00:00AM STOP=00:00AM

_/	/ \ / \ / \ / \ / \ / \ / \ / \ / \ / \	///////
SAT	START=00:00AM	STOP=00:00AM
HOL	START=00:00AM	STOP=00:00AM
	SOUND LIMIT	SCHEDULE
	(if enal	oled)
MON	START=00:00AM	STOP=00:00AM
TUE	START=00:00AM	STOP=00:00AM
WED	START=00:00AM	STOP=00:00AM
THU	START=00:00AM	STOP=00:00AM
FRI	START=00:00AM	STOP=00:00AM
SAT	START=00:00AM	STOP=00:00AM
HOL	START=00:00AM	STOP=00:00AM
	///////////////////////////////////////	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\


History data printout

History printouts, when selected, provide stored data relating to all specific system and chiller operating conditions at the time of the fault, regardless of whether a lockout occurred. History information is stored in battery-backed memory on the Chiller Control Board and is not affected by power failures or resetting of faults. Whenever a fault of any type occurs, all system operating data is stored in battery-backed memory at the instant of the fault. The history printout is similar to the operating data printout except for the change in the header information shown as follows:

The most recent fault will always be stored as HISTORY BUFFER #1.


SECTION 8 - MICROPANEL Form 201.28-NM1.1
Issue date: 08/06/2021

System switches key

System switches key operation

The SYSTEM SWITCHES key allows the operator to turn individual systems ON and OFF. Safety lockouts are also reset by selecting the respective system switch RESET. When the SYSTEM SWITCHES key is pressed, the following message will appear:

The display indicates the respective system and it's ON/OFF /reset switch status. The $\blacktriangle \blacktriangledown$ (ARROW) keys allow scrolling to the next and previous system switch (System 1 and 2).

The ◀ (LEFT ARROW) or ▶ (RIGHT ARROW) keys allow scrolling through the choices of:

- SYSTEM OFF (default)
- SYSTEM ON
- RESET (LOCKOUT)

The switch selection is accepted into memory by pressing the \checkmark (ENTER) key.

When the "RESET" selection is made and accepted, it will not change the position of the switch (either ON or OFF).

Whenever possible, except in emergencies, always use the associated system switch to turn off a compressor, which allows the compressors to go through a controlled shutdown. Avoid using the "UNIT" switch to turn off the compressors.

SECTION 9 - Maintenance

General requirements

The units have been designed to operate continuously, provided they are regularly maintained and operated within the limitations given in this manual. Each unit should be included in a routine schedule of daily maintenance checks by the operator or the customer, backed up by regular service inspection and maintenance visits by a suitably qualified Service Engineer.

It is entirely the responsibility of the owner to provide for these regular maintenance requirements and to enter into a maintenance agreement with a Johnson Controls service organization to protect the operation of the unit. If damage or a system failure occurs due to incorrect maintenance during the warranty period, Johnson Controls is not liable for costs incurred to return the unit to satisfactory condition.

This Maintenance section applies to the basic unit only and may, on individual contracts, be supplemented by additional requirements to cover any modifications or ancillary equipment as applicable.

The "Safety" section of this manual should be read carefully before attempting any maintenance operations on the unit.

Weekly maintenance

The following maintenance checks should be carried out on a weekly basis by the operator/customer. Note that the units are not generally user serviceable and no attempt should be made to rectify faults or problems found during daily checks unless competent and equipped to do so. If in any doubt, contact your local Johnson Controls Service Agent.

Unit status

Press the 'STATUS' key on the keypad and ensure that no fault messages are displayed.

Refrigerant leaks

Visually check the heat exchangers, compressors, and pipework for damage and gas leaks.

Operating conditions

Read the operating pressures and temperatures at the control panel using the display keys and check that these are within the operating limitations given in the manual.

Compressor oil level

Compressor oil level will typically run below the bottom of the sight glass. Oil levels will only be visible in the sight glass after running for periods of 15 minutes to 30 minutes at full compressor speed. Do not run with oil levels above the sight glass. Be careful when viewing the sight glass not to confuse a full sight glass with an empty sight glass.

Refrigerant charge

Ensure that there is a level of refrigerant in the evaporator sight glass while running at Full Load for 15 minutes to 30 minutes.

Adding charge to a system

A sight glass is located in the evaporator. When optimally charged after running full load, the refrigerant level should be approximately in the center of the sight glass. There should be little concern if the level is high or low in the glass, it should not affect operation.

It is not necessary to weigh charge unless the entire charge has been lost. The ease of charging is possible since the microchannel coils hold only a small amount of refrigerant charge. A charging valve, located between the fixed orifice and the evaporator, may be used if charge adjustment is required. Charge should be added as liquid while circulating water through the evaporator. If the complete charge needs to be added, see Refrigerant Removal, Evacuation and Charging a YVAA Chiller on page 166 in this section. Use the valve on the liquid line for adding the full charge and open the valves per the procedure.

SECTION 9 - MAINTENANCE Form 201.28-NM1.1

Issue date: 08/06/2021

Refrigerant removal, evacuation and charging a YVAA chiller

Refrigerant removal

The YVAA utilizes a flooded evaporator. Extreme care must be taken when removing refrigerant to prevent damage to the evaporator and the chiller. Carefully review the following caution before proceeding with the recommended process.

Incorrect removal of refrigerant will result in catastrophic freeze damage to the evaporator and possible additional damage to other chiller components. Whenever there is water in the evaporator, the chilled liquid pumps must be ON and circulating liquid through the evaporator above minimum recommended flow rates. When liquid refrigerant is being removed, monitor the pressure and do not allow the pressure to drop below the freeze point of the chilled liquid flowing through the evaporator until all liquid refrigerant has been removed from the evaporator and only gas remains. Once all liquid has been removed, the remaining refrigerant vapor can be removed while allowing the pressure to drop below the freeze point with the pump circulating liquid through the evaporator.

To remove refrigerant from the evaporator, complete the following steps:

- 1. Turn the chilled liquid pump ON and ensure the flow is above the minimum recommended flow.
- 2. Ensure all manual valves in the system are open. Open Condenser Drain and Economizer Feed valves to 100% in the service mode.
- 3. Connect the recovery unit and a manifold gauge to the liquid line feeding the eductor. There may be a valve in the line or a Schrader fitting on the eductor filter for this purpose.
- 4. Connect the recovery unit to a recovery cylinder sitting on an accurate scale. Turn the recovery unit ON and observe the liquid refrigerant flowing from the line into the cylinder. The flow of liquid should be obvious.

- 5. Monitor the pressure gauge to ensure that the pressure does not drop below the freeze point of the chilled liquid. Throttle the flow as needed with the manifold gauge valves to prevent pressures from dropping below the freeze point.
- 6. Continue to remove the liquid refrigerant while observing the flow and the pressure. Note the charge in the system based on the nameplate data to determine when the charge removal is nearly complete. Monitor the weight of the recovery cylinder to determine when the cylinder is full. Change the cylinder as needed.
- 7. Continue removing refrigerant until liquid is no longer observed flowing in the manifold hoses.
- 8. Once the liquid is removed and no longer visible in the hose, the remaining gas can be pumped out with the recovery unit while the pressure is allowed to drop to 0 barg (0 psig).
- 9. Servicing can now be performed on the system as needed.

Evacuating a system

To evacuate a system, complete the following steps:

- 1. Turn the chilled liquid pump ON and ensure the flow is above the minimum recommended flow.
- 2. Ensure all manual values are open. Open the Condenser Drain (Flash Tank Feed) and Economizer Valves in the Service Mode to 100%.
- 3. Connect vacuum hoses to as many points as possible. Be sure that at least one connection is made on both the high and low side of the piping. A connection to the evacuation fitting on the compressor is also recommended. Evacuate the system to a minimum of 500 microns. Close the valves at the evacuation points and ensure the pressure in the chiller does not rise more than 50 microns in 10 minutes. Check for leaks if the pressure rises.

Charging refrigerant into a system

To charge the system with refrigerant, complete the following steps:

- 1. With all system valves open and the Condenser Drain and Economizer Valves open to 100% by manually opening them in the Service Mode, charge refrigerant vapor into the high side of the system at the charging port on the liquid line. Continue charging vapor until the pressure is above the freeze point of the chilled liquid. Once above the freeze point, liquid can be charged according to the recommended nameplate charge.
- 2. Reconnect the water piping to the water boxes.
- 3. Close the evaporator drain valves and fill the evaporator with water from the cooling loop.
- 4. Fill the water loop and check for leaks.
- 5. Close (0%) the Condenser Drain and Economizer Valve in the Service Mode. Recycle the chiller power.
- 6. Once the system is operating, the charge will distribute itself throughout the system. Trim the charge as needed to a level of about midway on the evaporator sight glass while running full speed for 15 minutes.

Microchannel coil cleaning

Regular cleaning is an essential part of maintaining the integrity and heat transfer properties of heat exchangers. Failure to follow cleaning guidelines can result in heat exchanger damage, including leaks or loss of performance. The cleaning procedures described in this document are required to maintain the warranty of the condenser coils.

Microchannel coils tend to accumulate less dirt inside the coils than on the surface, which makes them easier to clean than conventional round tube and fin coils. The reduced depth and parallel tube layout of microchannel heat exchangers minimize the restriction of cleaning water through the heat exchanger. This provides a shorter and more direct path for cleaning water to effectively carry away dirt and debris during regular maintenance. During the cleaning process, take care to avoid damage to the coils and the protective coatings. The following care points must be followed during cleaning:

- DO NOT use high pressure water, such as a pressure washer, to clean the coils. High pressure water can damage the fins and the protective coatings on the coil.
- DO NOT contact the coil with a hard object such as a hose nozzle, hard vacuum nozzle or any other tool. Hard objects or tools can cause mechanical damage to the coil material and protective coatings on the coil.

The required cleaning procedure is different depending on the type of coil and protective coating supplied with the coil. This section describes the proper procedures to maintain the integrity of each type of coil.

Cleaning Procedure Required for Standard and Environment Guard Microchannel Coils

Standard and Environment Guard microchannel coils must be cleaned following this procedure at least once quarterly to ensure that the integrity of the coils and the warranty of the coils are maintained. In environments where coils become heavily fouled, a monthly frequency of cleaning is recommended:

- 1. Remove surface debris such as dirt, leaves, insects or fibers with a vacuum cleaner having a soft brush attachment. When brushing debris off the face of the coil a soft bristle brush, not wire, can also be used. Do not scrape the coil with the vacuum nozzle, air nozzle, or any other hard tool
- 2. Rinse the coil with potable tap water. Use a gentle spray from a spray nozzle with a plastic end. Do not contact the coil with the hose nozzle. Rinse the coil by running water through every passage in the heat exchanger surface until it is clean.
- 3. It is important to remove any excess water trapped in the coils immediately after the final water rinse. The condenser fans on the chiller can be run after the final water rinse to properly dry the coils. Any excess water can also be removed by blowing air through the coils with a hand held blower or vacuum.

Cleaning Procedure for Environment Guard Premium Microchannel Coils

Environment Guard Premium microchannel coils must be cleaned following this procedure at least once

SECTION 9 - MAINTENANCE Form 201.28-NM1.1

Issue date: 08/06/2021

quarterly to ensure that the integrity of the coils and the warranty of the coils are maintained. In environments where there are high levels of pollution or corrosive elements a monthly cleaning procedure using steps 1, 2 and 7 below is recommended in addition to the quarterly cleaning using steps 1-8:

- 1. Remove surface debris such as dirt, leaves, insects or fibers with a vacuum cleaner having a soft brush attachment. When brushing debris off the face of the coil a soft bristle brush, not wire, can also be used. Do not scrape the coil with the vacuum nozzle, air nozzle, or any other hard tool.
- 2. Rinse the coil with potable tap water. Use a gentle spray from a spray nozzle with a plastic end. Do not contact the coil with the hose nozzle. Rinse the coil by running water through every passage in the heat exchanger surface until it is clean.
- 3. Apply a coil cleaning solution approved by Johnson Controls. Johnson Controls approves the use of RectorSeal brand GulfCleanTM coil cleaner on Environment Guard Premium microchannel coils only. Coil cleaning solution is available from Johnson Controls Aftermarket Parts Centers in all global regions. Mix the correct amount of cleaner solution and water in accordance with the manufacturer's directions on the container. Use a handheld pump sprayer to apply the mixed cleaner solution on the coils. Ensure that the entire surface of the coils is wetted with the solution. Allow the cleaning solution to remain on each of the coils for approximately 10 min.
- 4. Repeat the water rinse as described in Step 2 to remove the cleaning solution.
- 5. Apply a salt reducer solution approved by Johnson Controls. Johnson Controls approves the use of RectorSeal brand GulfCleanTM salt reducer on Environment Guard Premium microchannel coils only. Salt reducer solution is available from Johnson Controls Aftermarket Parts Centers in all global regions. Mix the correct amount of salt reducer solution and water in accordance with the manufacturer's directions on the container. Use a hand-held pump sprayer to apply the solution on the coils. Ensure that the entire surface of the coils are wetted with the solution. Allow the salt reducer solution to remain on each of the coils for approximately 10 mins.

- Repeat the water rinse as described in Step 2 to remove the salt reducer solution. The final rinse should be thorough to ensure all cleaning solution and salt reducer solution is removed from the coils.
- 7. It is important to remove any excess water trapped in the coils imemdiately after the final water rinse. The condenser fans on the chiller can be run after the final water rinse to properly dry the coils. Any excess water can also be removed by blowing air through the coils with a hand helf blower or vacuum.
- 8. Visually inspect the Environment Guard Premium coating for any damage, degradation, or bare spots. If touch up of the coating is necessary, follow the process and materials approved by Johnson Controls in the condenser coil repair guide.

Part number (P/N)	Description
013-04185-000	Cleaner, coil, 4-1 gal
013-04185-001	Cleaner, coil, 1 gal
013-04186-000	Reducer, salt, 4-1 gal
013-04186-001	Reducer, salt, 1 gal

Chilled liquid system maintenance

Whenever the chilled liquid system requires maintenance, adhere to and observe all precautions noted below.

Scheduled maintenance

The maintenance operations detailed in the following table should be carried out on a regular basis by a suitably qualified Service Engineer. It should be noted that the interval necessary between each 'minor' and 'major' service can vary depending on, for instance, application, site conditions and expected operating schedule. Normally a 'minor' service should be carried out every three to six months and a 'major' service once a year. It is recommended that your local Johnson Controls Service Center is contacted for recommendations for individual sites.

Thermal dispersion flow switch

Check the sensor tip for buildup regularly, because it can affect the sensitivity of the sensor.

In case of any buildup at the sensor tip, use a soft cloth to remove it. Use vinegar as the cleaning agent to remove any stubborn buildup if necessary.

C

Chiller/compressor operating log

A Chiller/Compressor Operating Log is supplied at the end of this section for logging compressor and chiller operating data.

Before applying power to the chiller, ensure the chilled liquid system is filled

DO NOT apply power to the chiller unless the system is filled with water or glycol. If the chiller is equipped with the -20°F option, applying power to an empty chilled liquid system will cause the evaporator immersion heaters to fail.

Removing water/glycol from the evaporator

If the chiller is equipped with a -20°F evaporator freeze protection option, which incorporates immersion heaters, power must be removed from the chiller before the evaporator is drained to assure the heaters are not damaged. Failure to remove power will cause the evaporator immersion heaters to fail.

Evaporator freeze damage

Power must remain on the chiller whenever the ambient temperature drops below 32°F with water in the evaporator to avoid evaporator damage. To avoid damage, assure the correct heater option for 0°F minimum ambient or -20°F minimum ambient temperature is installed, based on the lowest expected ambient temperature at the chiller location.

During operation, the glycol freeze point must also be below the lowest expected refrigerant temperature.

Glycol concentration

If glycol is installed in the evaporator, the glycol concentration must assure that the freeze point is below the lowest expected ambient temperature at the chiller location to avoid evaporator damage.

Winterization

If glycol is installed in the evaporator, the glycol concentration must assure that the freeze point is below the lowest expected ambient temperature at the chiller location to avoid evaporator damage.

Form 201.28-NM1.1 Issue date: 08/06/2021

Maintenance requirements for YVAA chillers

Procedure	Weekly	Quarterly	Semi- annually	Annually	Every 5 years	Every * hours
Check Oil Level in Oil Separator Sight Glass.	Х					
Check Liquid Line Sight Glass/ Moisture Indicator.	X					
Check refrigerant level in the Evaporator Sight Glass while running full load for 10 to 15 minutes.	х					
Record System Operating Temperatures & Pressures.	Х					
Check Condenser Coils for dirt / debris and clean as necessary.	Х					
Check Programmable Operating Setpoints and Safety Cutouts. Ensure they are correct for the application.		Х				
Check Compressor and Evaporator Heater operation.	X***	X				
Check Suction Isolation Valve operation if equipped.	×					
Check for dirt in the Panel. Check Door Gasket sealing integrity.		X				
**Leak check the Chiller.			х			
**Sample Compressor Oil, check for Acid, and replace if necessary.				Х		
**Disconnect Power Source and Lock Out. Check tightness of Power Wiring connections.				×		
Check Glycol concentration on Low Temp. or other applications where freezing may be a problem.				×		
VSD Glycol Change.					Х	

^{*} Reserved for customer use for any special site requirements.

^{**} This procedure must be performed at the specific time by an industry certified technician who has been trained and qualified to work on this type of equipment. A record of this procedure be successfully carried out should be maintained on file by the equipment owner should proof of adequate maintenance be required at a later date for warranty purposes.

^{***} Chiller controller cannot detect the failure of heaters, compressor and evaporator heater need to weekly check and maintain to be normal in subfreezing region in winter. Weekly maintenance to heaters and with the chilled water pump controlled by unit controller is recommended and mandatory.

Table 26 - Troubleshooting guide

Problem	Possible cause	Action
		High Voltage to the Chiller is missing.
No display on control panel unit will not run.	Supply to the Panel is missing.	Check 1FU, 2FU, 4FU, 5FU 17FU, or 19FU.
		Check 2T or 10T Transformer.
	Line Fuse is blown.	Check Fuses.
	Chiller Control Board is defective.	Replace Chiller Control Board.
	Display Board defective.	Replace Display Board.
	SCR Diode Module is defective.	Check SCR/Diode Module.
Line from blown	IBGT Module is defective.	Check IBGT Module.
Line fuse blows.	VSD Logic Board is defective.	Replace VSD Logic Board.
	SCR Trigger Board is defective.	Replace SCR Trigger Board.
Chiller fault:	Ambient temperature is lower than the programmed operating limit.	Check the programmed cutout and determine if it is programmed correctly.
Low ambient temperature	Ambient Sensor is defective.	Check the panel against the thermometer reading of ambient temperature.
Chiller fault:	Ambient Temperature is above the maximum operating limit.	Check outside air temperature.
High ambient temperature	Ambient Sensor is defective.	Check the Panel Display against Thermometer reading of Ambient Temperature at the sensor.
		Check for restricted flow.
	Leaving chilled liquid temperature drops	Check for rapid flow changes.
	faster than the unit can unload.	Water loop is too small.
Chiller fault:		Flow is below minimum for chiller.
Low leaving chilled liquid		Check Sensor against Temp. Gauge in water line.
	Chilled Water Sensor is defective.	Check Sensor for intermittent operation.
		Check Wiring for shorts or opens.
System fault: Control voltage	System Fuse is blown.	Check respective system Fuse 20FU or 21FU.

Note: Always remove power to the chiller and ensure the DC Bus voltage has bled off.

SECTION 9 - MAINTENANCE Form 201.28-NM1.1 Issue date: 08/06/2021

Table 26 - Troubleshooting guide (cont'd)

Problem	Possible cause	Action
System fault:	Coils dirty.	Check and clean coils.
	Coils are damaged.	Comb out fins.
System fault:		Check fan fuses.
High discharge pressure	Fans NOT operating.	Check fan rotation.
		Check fan motor/blade.
	System is overcharged.	Remove charge and check subcooling.
	Discharge Temperature Sensor is defective.	Check Sensor.
System fault:	Condenser Fans NOT operating or are running backwards.	Check Fans.
High discharge temperature	Coils dirty.	Check and clean Coils.
	High Superheat.	Measure Superheat with gauges and thermocouple. Determine cause.
		Refrigerant charge low. Check subcooling.
		Excess charge in system, High discharge pressure. Check subcooling.
System fault: High motor temperature	High Motor temperature input from one of the sensors.	High Superheat. Drain/Feed Valves NOT controlling. Isolate cause.
Thigh motor temperature		Motor Sensor reading incorrectly. Program panel to ignore a single sensor.
		Economizer Solenoid energized at low speeds. Valve is leaking through.
	Low charge.	Check subcooling.
	Transducer reads incorrectly.	Check transducer against a gauge.
	Suction Temp. Sensor reads incorrectly.	Check sensor against a thermocouple.
System fault:	Low flow.	Check flow.
Low suction pressure	Condenser Drain (Flash Tank Feed) Valve NOT operating.	Check Feed and Drain Valve operation. Check superheat.
	Condenser or Drain (Flash Tank Feed) Valve defective.	Check Feed and Drain Valve operation. Check superheat.
	Discharge Transducer is defective.	Check transducer against a gauge.
	Ambient Temp. very high.	Normal operation.
System fault:	Fans not operating.	Check fan operation.
Discharge pressure limiting	Remote or local discharge pressure load limiting is programmed.	Normal operation.

Note: Always remove power to the chiller and ensure the DC Bus voltage has bled off.

Form 201.28-NM1.1 Issue date: 08/06/2021

0

Table 26 - Troubleshooting guide (cont'd)

Problem	Possible cause	Action	
		Ambient temperature is high, normal response from controller	
System status:	A high motor current anticipatory control	Remote or panel limiting is in effect, Normal response.	
Motor current limiting	has activated current limiting	Excess charge in system, adjust charge.	
		Condenser coils dirty, Clean condenser.	
		Fans not operating. Check fans.	
	Coolant level low.	Add coolant.	
VSD fault:	Glycol pump is defective.	Replace Glycol Pump.	
High baseplate temperature	VSD Board is defective	Replace VSD Logic Board.	
	IBGT Module is defective.	Check defective IGBT Module.	
VSD fault:	SCR/Diode Module is defective.	Check SCR/Diode Module.	
Low DC Bus voltage	SCR Trigger Board is defective.	Check SCR Trigger Board.	

Note: Always remove power to the chiller and ensure the DC Bus voltage has bled off.

SECTION 9 - MAINTENANCE Form 201.28-NM1.1 Issue date: 08/06/2021

R-134A conversion table

The following table can be used for converting R-134a pressures to their equivalent saturated temperatures.

Table 27 - R-134a pressure to saturated temperature conversion

Pressure psig (Bar)	Dew point temperature °F (°C)	Pressure psig (Bar)	Dew point temperature °F (°C)	Pressure psig (Bar)	Dew point temperature °F (°C)
0.0 (0)	-14.9 (-26.1)	135.0 (9.31)	105.0 (40.6)	270.0 (18.62)	152.0 (66.7)
5.0 (.34)	-3.0 (-19.4)	140.0 (9.65)	107.2 (41.8)	275.0 (18.96)	153.4 (67.4)
10.0 (.69)	6.7 (-14.1)	145.0 (10.0)	109.4 (43)	280.0 (19.31)	154.7 (68.2)
15.0 (1.03)	14.9 (-9.5)	150.0 (10.34)	111.5 (44.2)	285.0 (19.65)	156.1 (68.9)
20.0 (1.38)	22.2 (-5.4)	155.0 (10.69)	113.6 (45.3)	290.0 (19.99)	157.4 (69.7)
25.0 (1.72)	28.7 (-1.8)	160.0 (11.03)	115.6 (46.4)	295.0 (20.34)	158.7 (70.4)
30.0 (2.07)	34.6 (1.4)	165.0 (11.38)	117.6 (47.6)	300.0 (20.68)	160.0 (71.1)
35.0 (2.41)	40.0 (4.4)	170.0 (11.72)	119.6 (48.7)	305.0 (21.03)	161.3 (71.8)
40.0 (2.76)	45.0 (7.2)	175.0 (12.07)	121.5 (49.7)	310.0 (21.37)	162.5 (72.5)
45.0 (3.10)	49.6 (9.8)	180.0 (12.41)	123.3 (50.7)	315.0 (21.72)	163.8 (73.2)
50.0 (3.45)	54.0 (12.2)	185.0 (12.76)	125.2 (51.8)	320.0 (22.06)	165.0 (73.9)
55.0 (3.79)	58.1 (14.5)	190.0 (13.10)	126.9 (52.7)	325.0 (22.41)	166.2 (74.6)
60.0 (4.14)	62.0 (16.7)	195.0 (13.44)	128.7 (53.7)	330.0 (22.75)	167.4 (75.2)
65.0 (4.48)	65.7 (18.7)	200.0 (13.79)	130.4 (54.7)	335.0 (23.10)	168.6 (75.9)
70.0 (4.83)	69.2 (20.7)	205.0 (14.13)	132.1 (55.6)	340.0 (23.44)	169.8 (76.6)
75.0 (5.17)	72.6 (22.6)	210.0 (14.48)	133.8 (56.6)	345.0 (23.79)	171.0 (77.2)
80.0 (5.52)	75.9 (24.4)	215.0 (14.82)	135.5 (57.5)	350.0 (24.13)	172.1 (77.8)
85.0 (5.86)	79.0 (26.1)	220.0 (15.17)	137.1 (58.4)	355.0 (24.48)	173.3 (78.5)
90.0 (6.21)	82.0 (27.8)	225.0 (15.51)	138.7 (59.3)	360.0 (24.82)	174.4 (79.1)
95.0 (6.55)	84.9 (29.4)	230.0 (15.86)	140.2 (60.1)	365.0 (25.17)	175.5 (79.7)
100.0 (6.89)	87.7 (30.9)	235.0 (16.20)	141.8 (61)	370.0 (25.51)	176.6 (80.3)
105.0 (7.24)	90.4 (32.4)	240.0 (16.55)	143.3 (61.8)	375.0 (25.86)	177.7 (80.9)
110.0 (7.58)	93.0 (33.9)	245.0 (16.89)	144.8 (62.3)	380.0 (26.20)	178.8 (81.6)
115.0 (7.93)	95.5 (35.3)	250.0 (17.24)	146.3 (63.5)	385.0 (26.54)	179.9 (82.2)
120.0 (8.27)	98.0 (36.7)	255.0 (17.58)	147.7 (64.3)	390.0 (26.89)	180.9 (82.7)
125.0 (8.62)	100.4 (38)	260.0 (17.93)	149.2 (65.1)	395.0 (27.23)	182.0 (83.3)
130.0 (8.96)	102.7 (39.3)	265.0 (18.27)	150.6 (65.9)	400.0 (27.58)	183.0 (83.9)

Ľ

R-513A conversion table

The following table can be used for conversion of refrigerant R-513A from pressure to saturated temperature.

Table 28 - R-513A refrigerant pressure to saturated temperature

Pressure (psig)	Temperature average (°F)	Pressure (psig)	Temperature average (°F)	Pressure (psig)	Temperature average (°F)	Pressure (psig)	Temperature average (°F)
0	-20.5	130	99.3	260	146.7	390	179.1
5	-8.4	135	101.6	265	148.1	395	180.2
10	1.4	140	103.9	270	149.6	400	181.2
15	9.8	145	106.1	275	151.0	405	182.3
20	17.2	150	108.3	280	152.4	410	183.3
25	23.8	155	110.4	285	153.7	415	184.3
30	29.8	160	112.4	290	155.1	420	185.4
35	35.3	165	114.5	295	156.4	425	186.4
40	40.4	170	116.4	300	157.7	430	187.4
45	45.1	175	118.4	305	159.0	435	188.4
50	49.5	180	120.3	310	160.3	440	189.4
55	53.7	185	122.2	315	161.6	445	190.3
60	57.7	190	124.0	320	162.9	450	191.3
65	61.5	195	125.8	325	164.1	455	192.2
70	65.1	200	127.6	330	165.3	460	193.2
75	68.5	205	129.3	335	166.6	465	194.1
80	71.9	210	131.0	340	167.8	470	195.1
85	75.0	215	132.7	345	168.9	475	196.0
90	78.1	220	134.3	350	170.1	480	196.9
95	81.0	225	136.0	355	171.3	485	197.8
100	83.9	230	137.6	360	172.4	490	198.7
105	86.6	235	139.1	365	173.6	495	199.6
110	89.3	240	140.7	370	174.7	500	200.4
115	91.9	245	142.2	375	175.8	505	201.3
120	94.4	250	143.7	380	176.9		
125	96.9	255	145.2	385	178.0		

Notes:

- Temperature data is mean of vapor temperature and liquid temperature.
- 2. Source of the tabulated data above: REFPROP 9.1214, R513a.MIX, HMX.BNC from Chemours, saturation table. Data generated by Justin P. Kauffman on and as of 07/29/2016.

SECTION 9 - MAINTENANCE Form 201.28-NM1.1 Issue date: 08/06/2021

R-513A conversion table

The following table can be used for conversion of refrigerant R-513A from temperature to equivalent pressure.

Table 29 - R-513A Refrigerant temperature to pressure

Temperature (°F)	Pressure (psig)	Temperature (°F)	Pressure (psig)	Temperature (°F)	Pressure (psig)	Temperature (°F)	Pressure (psig)
-100	-13.52	-24	-1.25	52	52.89	128	201.25
-98	-13.42	-22	-0.55	54	55.31	130	207.04
-96	-13.32	-20	0.18	56	57.81	132	212.94
-94	-13.21	-18	0.94	58	60.37	134	218.96
-92	-13.09	-16	1.73	60	62.99	136	225.10
-90	-12.96	-14	2.55	62	65.69	138	231.36
-88	-12.82	-12	3.40	64	68.45	140	237.74
-86	-12.68	-10	4.28	66	71.29	142	244.25
-84	-12.53	-8	5.20	68	74.19	144	250.88
-82	-12.37	-6	6.15	70	77.18	146	257.64
-80	-12.20	-4	7.14	72	80.23	148	264.53
-78	-12.01	-2	8.16	74	83.36	150	271.56
-76	-11.82	0	9.22	76	86.57	152	278.72
-74	-11.62	2	10.32	78	89.86	154	286.00
-72	-11.40	4	11.46	80	93.23	156	293.44
-70	-11.17	6	12.63	82	96.67	158	301.01
-68	-10.93	8	13.85	84	100.20	160	308.72
-66	-10.68	10	15.11	86	103.82	162	316.58
-64	-10.41	12	16.41	88	107.51	164	324.58
-62	-10.13	14	17.76	90	111.30	166	332.74
-60	-9.83	16	19.14	92	115.17	168	341.05
-58	-9.52	18	20.58	94	119.12	170	349.51
-56	-9.19	20	22.06	96	123.17	172	358.12
-54	-8.85	22	23.59	98	127.31	174	366.90
-52	-8.49	24	25.16	100	131.54	176	375.85
-50	-8.11	26	26.79	102	135.87	178	384.96
-48	-7.71	28	28.47	104	140.29	180	394.23
-46	-7.29	30	30.19	106	144.80	182	403.69
-44	-6.86	32	31.97	108	149.42	184	413.32
-42	-6.40	34	33.81	110	154.13	186	423.14
-40	-5.92	36	35.70	112	158.94	188	433.14
-38	-5.42	38	37.64	114	163.86	190	443.34
-36	-4.90	40	39.64	116	168.88	192	453.73
-34	-4.35	42	41.70	118	174.00	194	464.33
-32	-3.78	44	43.81	120	179.23	196	475.15
-30	-3.19	46	45.99	122	184.57	198	486.19
-28	-2.57	48	48.23	124	190.02	200	497.47
-26	-1.92	50	50.53	126	195.58		

Notes:

^{1.} Temperature data is mean of vapor temperature and liquid temperature.

^{2.} Source of the tabulated data above: REFPROP 9.1214, R513a.MIX, HMX.BNC from Chemours, saturation table. Data generated by Justin P. Kauffman on and as of 07/29/2016.

Chilled liquid and suction temperature sensor input voltage

Table 30 - Temperature input voltage sensor (Measured signal to shield at the sensor)

Temperature °F (°C)	Voltage	Temperature °F (°C)	Voltage	Temperature °F (°C)	Voltage
16.1 (-8.8)	1.52	35.9 (2.2)	2.19	55.6 (13.1)	2.85
16.7 (-8.5)	1.54	36.5 (2.5)	2.21	56.3 (13.5)	2.87
17.3 (-8.2)	1.56	37.0 (2.8)	2.23	56.9 (13.8)	2.89
17.9 (-7.8)	1.58	37.6 (3.1)	2.25	57.5 (14.2)	2.91
18.5 (-7.5)	1.60	38.2 (3.4)	2.27	58.1 (14.5)	2.93
19.1 (-7.2)	1.62	38.7 (3.7)	2.29	58.7 (14.8)	2.95
19.7 (-6.8)	1.64	39.3 (4.1)	2.30	59.4 (15.2)	2.97
20.3 (-6.5)	1.66	39.9 (4.4)	2.32	60.0 (15.6)	2.99
20.9 (-6.2)	1.68	40.4 (4.7)	2.34	60.6 (15.9)	3.01
21.5 (-5.8)	1.70	41.0 (5.0)	2.36	61.3 (16.3)	3.03
22.1 (-5.5)	1.72	41.6 (5.3)	2.38	61.9 (16.6)	3.05
22.7 (-5.2)	1.74	42.1 (5.6)	2.40	62.5 (16.9)	3.07
23.3 (-4.8)	1.76	42.7 (5.9)	2.42	63.2 (17.3)	3.09
23.9 (-4.5)	1.78	43.3 (6.3)	2.44	63.8 (17.7)	3.11
24.5 (-4.2)	1.80	43.9 (6.6)	2.46	64.5 (18.1)	3.13
25.0 (-3.9)	1.82	44.4 (6.9)	2.48	65.1 (18.4)	3.14
25.6 (-3.6)	1.84	45.0 (7.2)	2.50	65.8 (18.8)	3.16
26.2 (-3.2)	1.86	45.6 (7.5)	2.52	66.5 (19.2)	3.18
26.8 (-2.9)	1.88	46.2 (7.9)	2.54	67.1 (19.5)	3.20
27.3 (-2.6)	1.90	46.7 (8.2)	2.56	67.8 (19.9)	3.22
27.9 (-2.8)	1.91	47.3 (8.5)	2.58	68.5 (20.3)	3.24
28.5 (-1.9)	1.93	47.9 (8.8)	2.60	69.2 (20.7)	3.26
29.0 (-1.7)	1.95	48.5 (9.2)	2.62	69.9 (21.1)	3.28
29.6 (-1.3)	1.97	49.1 (9.5)	2.64	70.6 (21.4)	3.30
30.2 (-1)	1.99	49.7 (9.8)	2.66	71.3 (21.8)	3.32
30.8 (-0.7)	2.01	50.3 (10.2)	2.68	72.0 (22.2)	3.34
31.3 (-0.4)	2.03	50.8 (10.4)	2.70	72.7 (22.6)	3.36
31.9 (-0.1)	2.05	51.4 (10.8)	2.71	73.4 (23)	3.38
32.5 (0.3)	2.07	52.0 (11.1)	2.73	74.2 (23.4)	3.40
33.0 (0.6)	2.09	52.6 (11.4)	2.75	74.9 (23.8)	3.42
33.6 (0.9)	2.11	53.2 (11.8)	2.77		
34.2 (1.2)	2.13	53.8 (12.1)	2.79		
34.8 (1.5)	2.15	54.5 (12.5)	2.81		
35.3 (1.8)	2.17	55.0 (12.8)	2.83		

Form 201.28-NM1.1 Issue date: 08/06/2021

Table 31 - Outside air temperature sensor input voltage, measured signal to shield at the sensor

Temperature °F (°C)	Voltage	Temperature °F (°C)	Voltage	Temperature °F (°C)	Voltage
0.24 (-17.6)	0.68	49.8 (9.9)	2.00	93.3 (34.1)	3.31
1.79 (-16.8)	0.71	50.7 (10.4)	2.03	94.4 (34.7)	3.34
3.30 (-15.9)	0.74	51.6 (10.9)	2.06	95.6 (35.3)	3.37
4.76 (-15.1)	0.77	52.5 (11.4)	2.09	96.8 (36)	3.40
6.19 (-14.3)	0.80	53.4 (11.9)	2.11	98.0 (36.7)	3.43
7.58 (-13.6)	0.83	54.3 (12.4)	2.14	99.2 (37.3)	3.46
8.94 (-12.8)	0.85	55.3 (12.9)	2.17	100.4 (38)	3.49
10.3 (-12.1)	0.88	56.2 (13.4)	2.20	101.6 (38.7)	3.52
11.6 (-11.3)	0.91	57.1 (13.9)	2.23	102.9 (39.4)	3.55
12.8 (-10.7)	0.94	58.0 (14.4)	2.26	104.2 (40.1)	3.57
14.1 (-9.9)	0.97	58.9 (14.9)	2.29	105.5 (40.8)	3.60
15.3 (-9.3)	1.00	59.8 (15.4)	2.32	106.8 (41.6)	3.63
16.5 (-8.6)	1.03	60.7 (15.9)	2.35	108.1 (42.3)	3.66
17.7 (-7.9)	1.06	61.6 (16.4)	2.38	109.5 (43.1)	3.69
18.9 (-7.3)	1.09	62.6 (17)	2.41	110.9 (43.8)	3.72
20.0 (-6.7)	1.12	63.5 (17.5)	2.44	112.3 (44.6)	3.75
21.2 (-6)	1.15	64.4 (18)	2.47	113.8 (45.4)	3.78
22.3 (-5.4)	1.18	65.3 (18.5)	2.50	115.2 (46.2)	3.81
23.4 (-4.8)	1.21	66.3 (19.1)	2.52	116.7 (47.1)	3.84
24.4 (-4.2)	1.24	67.2 (19.5)	2.55	118.3 (47.9)	3.87
25.5 (-3.6)	1.26	68.1 (20.1)	2.58	119.9 (48.8)	3.90
26.6 (-3)	1.26	69.1 (20.6)	2.61	121.5 (49.7)	3.93
27.6 (-2.4)	1.32	70.0 (21.1)	2.64	123.2 (50.7)	3.96
28.7 (-1.8)	1.35	70.9 (21.6)	2.67	124.9 (51.6)	3.98
29.7 (-1.3)	1.38	71.9 (22.2)	2.70	126.6 (52.6)	4.01
30.7 (-0.7)	1.41	72.8 (22.7)	2.73	128.4 (53.6)	4.04
31.7 (-0.2)	1.44	73.8 (23.2)	2.76	130.3 (54.6)	4.07
32.7 (0.4)	1.47	74.8 (23.8)	2.76		
33.7 (0.9)	1.50	75.8 (24.3)	2.82		
34.7 (1.5)	1.53	76.7 (24.8)	2.85		
35.7 (2.1)	1.56	77.7 (25.4)	2.88		
36.7 (2.6)	1.59	78.7 (25.9)	2.91		
37.6 (3.1)	1.62	79.7 (26.5)	2.93		
38.6 (3.7)	1.65	80.7 (27.1)	2.96		
39.6 (4.2)	1.67	81.7 (27.6)	2.99		
40.5 (4.7)	1.70	82.7 (28.2)	3.02		
41.4 (5.2)	1.73	83.6 (28.7)	3.05		
42.4 (5.8)	1.76	84.6 (29.2)	3.08		
43.3 (6.3)	1.79	85.7 (29.8)	3.11		
44.3 (6.8)	1.82	86.7 (30.4)	3.13		
45.2 (7.3)	1.85	87.8 (31)	3.16		
46.1 (7.8)	1.88	88.9 (31.6)	3.19		
47.0 (8.3)	1.91	90.1 (32.3)	3.22		
48.0 (8.9)	1.94	91.1 (32.8)	3.25		
48.9 (9.4)	1.97	92.2 (33.4)	3.28		

Table 32 - Pressure transducer output voltage, measured signal to return at the transducer

_	Suction pressure transducer (125 psig)		id pressure and discharge ransducer psig)
Pressure	Voltage	Pressure	Voltage
0	0.50	0	0.50
5	0.66	25	0.75
10	0.82	50	1.00
15	0.98	75	1.25
20	1.14	100	1.50
25	1.30	125	1.75
30	1.46	150	2.00
35	1.62	175	2.25
40	1.78	200	2.50
45	1.94	225	2.75
50	2.10	250	3.00
55	2.26	275	3.25
60	2.42	300	3.50
65	2.58	325	3.75
70	2.74	350	4.00
75	2.90	375	4.25
80	3.06	400	4.50
85	3.22		
90	3.38		
95	3.54		
100	3.70		
105	3.86		
110	4.02		
115	4.18		
120	4.34		
125	4.50		

Form 201.28-NM1.1 Issue date: 08/06/2021

Table 33 - Motor temperature sensor resistance (Check at the motor)

Temperature	R nominal	R Tol	Rmin	Rmax
°F (°C)	(ohms)	(± %)	(ohms)	(ohms)
-4 (-20)	97,062	5.00	92,209	101,915
5 (-15)	77,941	4.60	69,586	76,296
14 (-10)	55,391	4.20	52,996	57,643
23 (-5)	42,324	3.85	40,695	43,954
32 (0)	32,654	3.50	31,511	33,797
41 (5)	25,396	3.15	24,596	26,196
50 (10)	19,903	2.80	19,346	20,461
59 (15)	15,713	2.50	15,321	16,106
68 (20)	12,493	2.20	12,218	12,768
77 (25)	10,000	2.00	9,800	10,200
86 (30)	8,056	2.40	7,863	8,250
95 (35)	6,531	2.70	6,354	6,707
104 (40)	5,326	3.00	5,166	5,485
113 (45)	4,368	3.25	4,226	4,510
122 (50)	3,602	3.50	3,476	3,728
131 (55)	2,986	3.75	2,874	3,098
140 (60)	2,488	4.00	2,389	2,588
149 (65)	2,083	4.25	1,995	2,172
158 (70)	1,753	4.50	1,674	1,832
167 (75)	1,481	4.75	1,411	1,551
176 (80)	1,257	5.00	1,194	1,321
185 (85)	1,071	5.20	1,016	1,127
194 (90)	916.9	5.40	867.4	966.4
203 (95)	787.7	5.60	743.6	831.9
212 (100)	679.3	5.80	639.9	718.7
221 (105)	587.9	6.00	552.6	623.2
230 (110)	510.6	6.20	479.9	542.3
239 (115)	445.0	6.40	416.5	473.5
248 (120)	389.0	6.60	363.4	414.7
257 (125)	341.2	6.70	318.4	364.1
266 (130)	300.2	6.90	279.5	320.9
275 (135)	264.9	7.10	246.1	283.7
284 (140)	234.4	7.30	217.3	251.5
293 (145)	208.0	7.40	192.6	223.3
302 (150)	185.0	7.50	171.1	198.9

10

Section 10 - Decommissioning, dismantling, and disposal

Never release refrigerant to the atmosphere when emptying the refrigerating circuits. Suitable retrieval equipment must be used. If reclaimed refrigerant cannot be reused. It must be returned to the manufacturer.

Never discard used compressor oil, as it contains refrigerant in solution. Return used oil to the oil manufacturer.

Never discard used compressor oil, as it contains refrigerant in the solution. Return used oil to the oil manufacturer.

Unless otherwise indicated, the operations described as follows can be performed by any properly trained maintenance technician.

General

Isolate all sources of electrical supply to the unit including any control system supplies switched by the unit. Ensure that all points of isolation are secured in the 'OFF' position. The supply cables may then be disconnected and removed. For connection points See SECTION 4 - INSTALLATION.

Remove all refrigerant from each system of the unit into a suitable container using a refrigerant reclaim or recovery unit. This refrigerant may then be re-used, if appropriate, or returned to the manufacturer for disposal. Under NO circumstances should refrigerant be vented to atmosphere. Drain the refrigerant oil from each system into a suitable container and dispose of according to local laws and regulations governing the disposal of oily wastes. Any spilt oil should be mopped up and disposed of as mentioned above.

Isolate the unit heat exchanger from the external water systems and drain the heat exchanger section of the system. If no isolation valves are installed it may be necessary to drain the complete system.

If glycol or similar solutions have been used in the water system, or chemical additives are contained, the solution MUST be disposed of in a suitable and safe manner. Under NO circumstances should any system containing glycol or similar solutions be drained directly into domestic waste or natural water systems.

After draining, the water pipework can be disconnected and removed.

Packaged units can generally be removed in one piece after disconnection as above. Any fixing down bolts should be removed and then the unit should be lifted from position using the points provided and equipment of adequate lifting capacity.

See SECTION 4 - INSTALLATION for unit installation instructions, SECTION 9 - MAINTENANCE for unit weights and SECTION 3 - RIGGING, HANDLING, AND STORAGE for handling.

Units which cannot be removed in one piece after disconnection as above must be dismantled in position. Special care should be taken regarding the weight and handling of each component. Where possible units should be dismantled in the reverse order of installation.

Residual refrigerant oil and glycol or similar solutions may remain in some parts of the system. These should be mopped up and disposed of as described above.

It is important to ensure that whilst components are being removed the remaining parts are supported in a safe manner.

Only use lifting equipment of adequate capacity.

After removal from position the unit parts may be disposed of according to local laws and regulations.

Form 201.28-NM1.1 Issue date: 08/06/2021

The following factors can be used to convert from English to the most common SI Metric values.

Table 34 - SI metric conversion

Measurement	Multiply English unit	By factor	To obtain metric unit
Capacity	Tons refrigerant effect (ton)	3.516	Kilowatts (kW)
Power	Horsepower	0.7457	Kilowatts (kW)
Flow rate	Gallons/Minute (gpm)	0.0631	Liters/Second (I/s)
Length	Feet (ft)	0.3048	Meters (m)
	Inches (in.)	25.4	Millimeters (mm)
Weight	Pounds (lb)	0.4536	Kilograms (kg)
Velocity	Feet/Second (fps)	0.3048	Meters/Second (m/s)
Pressure drop	Feet of water (ft)	2.989	Kilopascals (kPa)
	Pounds/Square Inch (psig)	6.895	Kilopascals (kPa)

Temperature

Example: $(45.0^{\circ}\text{F} - 32^{\circ}) \times 0.5556 = 7.22^{\circ}\text{C}$.

To convert a temperature range (that is a range of 10°F) from Fahrenheit to Celsius, multiply by 5/9 or 0.5556.

Example: 10.0°F range x 0.5556 = 5.6 °C range.

Form 201.28-NM1.1 Issue date: 08/06/2021

Notes

Form 201.28-NM1.1 (821) Issue Date: August 6, 2021 Supersedes: 201.28-NM1.1 (321)